Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 15 - 21, 30.06.2021
https://doi.org/10.51354/mjen.822630

Öz

Kaynakça

  • M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,” arXiv Prepr. arXiv1603.04467, 2016.
  • M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” in Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, 2016, pp. 265–283
  • S. W. D. Chien, S. Markidis, V. Olshevsky, Y. Bulatov, E. Laure, and J. Vetter, “TensorFlow Doing HPC,” in 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2019, pp. 509–518.
  • A. Agrawal et al., “TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning,” arXiv Prepr. arXiv1903.01855, 2019.
  • L. Parisi, D. Neagu, R. Ma, and F. Campean, “QReLU and m-QReLU: Two novel quantum activation functions to aid medical diagnostics,” arXiv Prepr. arXiv2010.08031, 2020.
  • T. Williams and R. Li, “Wavelet pooling for convolutional neural networks,” in 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, 2018.
  • S. Pakravan, P. A. Mistani, M. A. Aragon-Calvo, and F. Gibou, “Solving inverse-PDE problems with physics-aware neural networks,” arXiv Prepr. arXiv2001.03608, 2020.
  • D. Perepelkin and M. Ivanchikova, “Research of Neural Network Architectures for Solving Adaptive Routing Problems in Multiprovider Networks of Distributed Data Centers,” in 2020 9th Mediterranean Conference on Embedded Computing, MECO 2020, 2020, pp. 1–5.
  • M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen, Computer Vision Using Local Binary Patterns, vol. 40. Springer Science & Business Media, 2011.
  • M. Pietikäinen, “Local Binary Patterns,” Scholarpedia, vol. 5, no. 3, p. 9775, 2010.
  • A. Al-Shatnawi, F. Al-Saqqar, and S. Alhusban, “A holistic model for recognition of handwritten arabic text based on the local binary pattern technique,” Int. J. Interact. Mob. Technol., vol. 14, no. 16, pp. 20–34, 2020.
  • S. Nigam, R. Singh, and A. K. Misra, “Local Binary Patterns Based Facial Expression Recognition for Efficient Smart Applications,” in Security in Smart Cities: Models, Applications, and Challenges, Springer, 2019, pp. 297–322.
  • M. Hassaballah, H. A. Alshazly, and A. A. Ali, “Ear recognition using local binary patterns: A comparative experimental study,” Expert Syst. Appl., vol. 118, pp. 182–200, 2019.
  • H. Erfankhah, M. Yazdi, M. Babaie, and H. R. Tizhoosh, “Heterogeneity-Aware Local Binary Patterns for Retrieval of Histopathology Images,” IEEE Access, vol. 7, pp. 18354–18367, 2019.
  • E. S. M. El-Alfy and A. G. Binsaadoon, “Automated gait-based gender identification using fuzzy local binary patterns with tuned parameters,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 7, pp. 2495–2504, 2019.
  • T. Shen, F. Huang, and L. Jin, “An improved edge detection algorithm for noisy images,” ACM Int. Conf. Proceeding Ser., vol. 36, no. 3, pp. 84–88, 2019.
  • R. Touahri, N. Azizi, N. E. Hammami, M. Aldwairi, and F. Benaida, “Automated breast tumor diagnosis using local binary patterns (LBP) based on deep learning classification,” in 2019 International Conference on Computer and Information Sciences, ICCIS 2019, 2019, pp. 1–5.
  • T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, 2002.

A TensorFlow implementation of Local Binary Patterns Transform

Yıl 2021, , 15 - 21, 30.06.2021
https://doi.org/10.51354/mjen.822630

Öz

Feature extraction layers like Local Binary Patterns (LBP) transform can be very useful for improving the accuracy of machine learning and deep learning models depending on the problem type. Direct implementations of such layers in Python may result in long running times, and training a computer vision model may be delayed significantly. For this purpose, TensorFlow framework enables developing accelerated custom operations based on the existing operations which already have support for accelerated hardware such as multicore CPU and GPU. In this study, LBP transform which is used for feature extraction in various applications, was implemented based on TensorFlow operations. The evaluations were done using both standard Python operations and TensorFlow library for performance comparisons. The experiments were realized using images in various dimensions and various batch sizes. Numerical results show that algorithm based on TensorFlow operations provides good acceleration rates over Python runs. The implementation of LBP can be used for the accelerated computing for various feature extraction purposes including machine learning as well as in deep learning applications.

Kaynakça

  • M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,” arXiv Prepr. arXiv1603.04467, 2016.
  • M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” in Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, 2016, pp. 265–283
  • S. W. D. Chien, S. Markidis, V. Olshevsky, Y. Bulatov, E. Laure, and J. Vetter, “TensorFlow Doing HPC,” in 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2019, pp. 509–518.
  • A. Agrawal et al., “TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning,” arXiv Prepr. arXiv1903.01855, 2019.
  • L. Parisi, D. Neagu, R. Ma, and F. Campean, “QReLU and m-QReLU: Two novel quantum activation functions to aid medical diagnostics,” arXiv Prepr. arXiv2010.08031, 2020.
  • T. Williams and R. Li, “Wavelet pooling for convolutional neural networks,” in 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, 2018.
  • S. Pakravan, P. A. Mistani, M. A. Aragon-Calvo, and F. Gibou, “Solving inverse-PDE problems with physics-aware neural networks,” arXiv Prepr. arXiv2001.03608, 2020.
  • D. Perepelkin and M. Ivanchikova, “Research of Neural Network Architectures for Solving Adaptive Routing Problems in Multiprovider Networks of Distributed Data Centers,” in 2020 9th Mediterranean Conference on Embedded Computing, MECO 2020, 2020, pp. 1–5.
  • M. Pietikäinen, A. Hadid, G. Zhao, and T. Ahonen, Computer Vision Using Local Binary Patterns, vol. 40. Springer Science & Business Media, 2011.
  • M. Pietikäinen, “Local Binary Patterns,” Scholarpedia, vol. 5, no. 3, p. 9775, 2010.
  • A. Al-Shatnawi, F. Al-Saqqar, and S. Alhusban, “A holistic model for recognition of handwritten arabic text based on the local binary pattern technique,” Int. J. Interact. Mob. Technol., vol. 14, no. 16, pp. 20–34, 2020.
  • S. Nigam, R. Singh, and A. K. Misra, “Local Binary Patterns Based Facial Expression Recognition for Efficient Smart Applications,” in Security in Smart Cities: Models, Applications, and Challenges, Springer, 2019, pp. 297–322.
  • M. Hassaballah, H. A. Alshazly, and A. A. Ali, “Ear recognition using local binary patterns: A comparative experimental study,” Expert Syst. Appl., vol. 118, pp. 182–200, 2019.
  • H. Erfankhah, M. Yazdi, M. Babaie, and H. R. Tizhoosh, “Heterogeneity-Aware Local Binary Patterns for Retrieval of Histopathology Images,” IEEE Access, vol. 7, pp. 18354–18367, 2019.
  • E. S. M. El-Alfy and A. G. Binsaadoon, “Automated gait-based gender identification using fuzzy local binary patterns with tuned parameters,” J. Ambient Intell. Humaniz. Comput., vol. 10, no. 7, pp. 2495–2504, 2019.
  • T. Shen, F. Huang, and L. Jin, “An improved edge detection algorithm for noisy images,” ACM Int. Conf. Proceeding Ser., vol. 36, no. 3, pp. 84–88, 2019.
  • R. Touahri, N. Azizi, N. E. Hammami, M. Aldwairi, and F. Benaida, “Automated breast tumor diagnosis using local binary patterns (LBP) based on deep learning classification,” in 2019 International Conference on Computer and Information Sciences, ICCIS 2019, 2019, pp. 1–5.
  • T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, 2002.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Devrim Akgün 0000-0002-0770-599X

Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Akgün, D. (2021). A TensorFlow implementation of Local Binary Patterns Transform. MANAS Journal of Engineering, 9(1), 15-21. https://doi.org/10.51354/mjen.822630
AMA Akgün D. A TensorFlow implementation of Local Binary Patterns Transform. MJEN. Haziran 2021;9(1):15-21. doi:10.51354/mjen.822630
Chicago Akgün, Devrim. “A TensorFlow Implementation of Local Binary Patterns Transform”. MANAS Journal of Engineering 9, sy. 1 (Haziran 2021): 15-21. https://doi.org/10.51354/mjen.822630.
EndNote Akgün D (01 Haziran 2021) A TensorFlow implementation of Local Binary Patterns Transform. MANAS Journal of Engineering 9 1 15–21.
IEEE D. Akgün, “A TensorFlow implementation of Local Binary Patterns Transform”, MJEN, c. 9, sy. 1, ss. 15–21, 2021, doi: 10.51354/mjen.822630.
ISNAD Akgün, Devrim. “A TensorFlow Implementation of Local Binary Patterns Transform”. MANAS Journal of Engineering 9/1 (Haziran 2021), 15-21. https://doi.org/10.51354/mjen.822630.
JAMA Akgün D. A TensorFlow implementation of Local Binary Patterns Transform. MJEN. 2021;9:15–21.
MLA Akgün, Devrim. “A TensorFlow Implementation of Local Binary Patterns Transform”. MANAS Journal of Engineering, c. 9, sy. 1, 2021, ss. 15-21, doi:10.51354/mjen.822630.
Vancouver Akgün D. A TensorFlow implementation of Local Binary Patterns Transform. MJEN. 2021;9(1):15-21.

Manas Journal of Engineering 

16155