Araştırma Makalesi
BibTex RIS Kaynak Göster

Polynomial Solutions of Electric Field Equations in Anisotropic Media

Yıl 2024, Cilt: 12 Sayı: 1, 77 - 87, 21.06.2024
https://doi.org/10.51354/mjen.1274359

Öz

The time-dependent system of partial differential equations of the second order
describing the electric wave propagation in electrically and magnetically anisotropic
homogeneous media is considered in the paper. A method for the computation of
the polynomial solutions of the initial value problem for the considered system
is proposed. Symbolic computations are used and these symbolic computations
are implemented in Maple. It is proved also that these polynomial solutions are
approximate solutions of the considered initial value problem with smooth initial
data and the inhomogeneous term. The computational experiments confirm the
robustness of the suggested method for the computation of electric fields in general
electrically and magnetically anisotropic media.

Kaynakça

  • [1] Cohen, G. C. (2002). Higher-order numerical methods for transient wave equations. Scientific computation. Springer, Berlin, Heidelberg, New York. [2] Courant, R. and Hilbert, D. (2008). Methods of mathematical physics: partial differential equations. John Wiley & Sons.
  • [3] Eom, H. J. (2004). Electromagnetic Wave Theory For Boundary-Value Problems. Springer-Verlag, Berlin.
  • [4] Goldberg, J. L. (1991). Matrix Theory with Applications. McGraw-Hill, New York.
  • [5] Ikawa, M. (2000). Hyperbolic partial differential equations and wave phenomena, volume 2. American Mathematical Soc.
  • [6] Ishimaru, A. (1991). Electromagnetic wave propagation, radiation, and scattering. Prentice Hall.
  • [7] Kong, J. A. (1990). Electromagnetic Wave Theory, 2nd ed. Wiley. John Wiley & Sons Inc., New York.
  • [8] Mizohata, S. (1973). The theory of partial differential equations. CUP Archive.
  • [9] Monk, P. (2003). Finite Element Methods For Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York.
  • [10] Neittaanm¨aki, P., Joly, P., Heikkola, E., Cohen, G. C., national de recherche en informatique et en automatique (France), I., and of Jyv¨askyl¨a (FI), U., editors (2003). Mathematical and numerical aspects of wave propagation –WAVES 2003 : proceedings, 6, Jyv¨askyl¨a, FI. Springer.
  • [11] Ramo, S., Whinnery, J. R., and Duzer, T. (1994). Fields andWaves in Communication Electronics. Wiley. JohnWiley & Sons Inc., New York.
  • [12] Stinson, D. C. (1976). Intermediate mathematics of electromagnetics. Electrical engineering series. Prentice-Hall, Englewood Cliffs.
  • [13] Taflove, A. (1995). Computational electrodynamics : the finite-difference time-domain method. Artech House, Boston.
  • [14] Yakhno, V. and Altunkaynak, M. (2009). Symbolic computation of an exact solution of the cauchy problem for the system of crystal optics with polynomial data. In Numerical Analysis and Its Applications: 4th International Conference,NAA 2008, Lozenetz, Bulgaria, June 16-20, 2008. Revised Selected Papers 4, pages 596–603. Springer.
  • [15] Yakhno, V. and Altunkaynak, M. (2016). A polynomial approach to determine the time-dependent electric and magnetic fields in anisotropic materials by symbolic computations. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 35(3).
  • [16] Yakhno, V. and Altunkaynak, M. (2018). Symbolic computation of the time-dependent electric and magnetic fields in bi-anisotropic media with polynomial inputs. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 31(5):e2339.
  • [17] Yakhno, V. G. and Altunkaynak, M. (2010). A new method for computing a solution of the Cauchy problem with polynomial data for the system of crystal optics. Int. J. Comput. Math., 87(7):1469 – 1484.
  • [18] Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations inisotropic media. IEEE Trans. Antennas Propag., 14:302 – 307.
  • [19] Zachmanoglou, E. C. and Thoe, D.W. (1986). Introduction to partial differential equations with applications. Courier Corporation.
  • [20] Zienkiewicz, O. C. and Taylor, R. L. (2000). The Finite Element Method, 5 th ed. Butterworth-Heinemann, Oxford.
Yıl 2024, Cilt: 12 Sayı: 1, 77 - 87, 21.06.2024
https://doi.org/10.51354/mjen.1274359

Öz

Kaynakça

  • [1] Cohen, G. C. (2002). Higher-order numerical methods for transient wave equations. Scientific computation. Springer, Berlin, Heidelberg, New York. [2] Courant, R. and Hilbert, D. (2008). Methods of mathematical physics: partial differential equations. John Wiley & Sons.
  • [3] Eom, H. J. (2004). Electromagnetic Wave Theory For Boundary-Value Problems. Springer-Verlag, Berlin.
  • [4] Goldberg, J. L. (1991). Matrix Theory with Applications. McGraw-Hill, New York.
  • [5] Ikawa, M. (2000). Hyperbolic partial differential equations and wave phenomena, volume 2. American Mathematical Soc.
  • [6] Ishimaru, A. (1991). Electromagnetic wave propagation, radiation, and scattering. Prentice Hall.
  • [7] Kong, J. A. (1990). Electromagnetic Wave Theory, 2nd ed. Wiley. John Wiley & Sons Inc., New York.
  • [8] Mizohata, S. (1973). The theory of partial differential equations. CUP Archive.
  • [9] Monk, P. (2003). Finite Element Methods For Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York.
  • [10] Neittaanm¨aki, P., Joly, P., Heikkola, E., Cohen, G. C., national de recherche en informatique et en automatique (France), I., and of Jyv¨askyl¨a (FI), U., editors (2003). Mathematical and numerical aspects of wave propagation –WAVES 2003 : proceedings, 6, Jyv¨askyl¨a, FI. Springer.
  • [11] Ramo, S., Whinnery, J. R., and Duzer, T. (1994). Fields andWaves in Communication Electronics. Wiley. JohnWiley & Sons Inc., New York.
  • [12] Stinson, D. C. (1976). Intermediate mathematics of electromagnetics. Electrical engineering series. Prentice-Hall, Englewood Cliffs.
  • [13] Taflove, A. (1995). Computational electrodynamics : the finite-difference time-domain method. Artech House, Boston.
  • [14] Yakhno, V. and Altunkaynak, M. (2009). Symbolic computation of an exact solution of the cauchy problem for the system of crystal optics with polynomial data. In Numerical Analysis and Its Applications: 4th International Conference,NAA 2008, Lozenetz, Bulgaria, June 16-20, 2008. Revised Selected Papers 4, pages 596–603. Springer.
  • [15] Yakhno, V. and Altunkaynak, M. (2016). A polynomial approach to determine the time-dependent electric and magnetic fields in anisotropic materials by symbolic computations. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 35(3).
  • [16] Yakhno, V. and Altunkaynak, M. (2018). Symbolic computation of the time-dependent electric and magnetic fields in bi-anisotropic media with polynomial inputs. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 31(5):e2339.
  • [17] Yakhno, V. G. and Altunkaynak, M. (2010). A new method for computing a solution of the Cauchy problem with polynomial data for the system of crystal optics. Int. J. Comput. Math., 87(7):1469 – 1484.
  • [18] Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations inisotropic media. IEEE Trans. Antennas Propag., 14:302 – 307.
  • [19] Zachmanoglou, E. C. and Thoe, D.W. (1986). Introduction to partial differential equations with applications. Courier Corporation.
  • [20] Zienkiewicz, O. C. and Taylor, R. L. (2000). The Finite Element Method, 5 th ed. Butterworth-Heinemann, Oxford.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Meltem Altunkaynak 0000-0002-6706-2957

Yayımlanma Tarihi 21 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 1

Kaynak Göster

APA Altunkaynak, M. (2024). Polynomial Solutions of Electric Field Equations in Anisotropic Media. MANAS Journal of Engineering, 12(1), 77-87. https://doi.org/10.51354/mjen.1274359
AMA Altunkaynak M. Polynomial Solutions of Electric Field Equations in Anisotropic Media. MJEN. Haziran 2024;12(1):77-87. doi:10.51354/mjen.1274359
Chicago Altunkaynak, Meltem. “Polynomial Solutions of Electric Field Equations in Anisotropic Media”. MANAS Journal of Engineering 12, sy. 1 (Haziran 2024): 77-87. https://doi.org/10.51354/mjen.1274359.
EndNote Altunkaynak M (01 Haziran 2024) Polynomial Solutions of Electric Field Equations in Anisotropic Media. MANAS Journal of Engineering 12 1 77–87.
IEEE M. Altunkaynak, “Polynomial Solutions of Electric Field Equations in Anisotropic Media”, MJEN, c. 12, sy. 1, ss. 77–87, 2024, doi: 10.51354/mjen.1274359.
ISNAD Altunkaynak, Meltem. “Polynomial Solutions of Electric Field Equations in Anisotropic Media”. MANAS Journal of Engineering 12/1 (Haziran 2024), 77-87. https://doi.org/10.51354/mjen.1274359.
JAMA Altunkaynak M. Polynomial Solutions of Electric Field Equations in Anisotropic Media. MJEN. 2024;12:77–87.
MLA Altunkaynak, Meltem. “Polynomial Solutions of Electric Field Equations in Anisotropic Media”. MANAS Journal of Engineering, c. 12, sy. 1, 2024, ss. 77-87, doi:10.51354/mjen.1274359.
Vancouver Altunkaynak M. Polynomial Solutions of Electric Field Equations in Anisotropic Media. MJEN. 2024;12(1):77-8.

Manas Journal of Engineering 

16155