Research Article
BibTex RIS Cite

ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE

Year 2025, Volume: 7 Issue: 2, 47 - 62, 30.10.2025
https://doi.org/10.47087/mjm.1696453

Abstract

This study examines some shape-preserving properties of two-variable Kantorovich polynomials. We examine which types of conic equations transform into conic equations under two types of two-variable Kantorovich polynomials, single-index and double-index, and if so, which conic equations they transform into. While it is observed that conic equations transform into
the same type of conic equations under the single-index two-variable Kantorovich polynomial, they are shown to transform into different types under the double-index two-variable Kantorovich polynomial, for example, a circle can transform into an ellipse or parabola under certain conditions. Furthermore, all the  findings are supported by numerous graphical examples.

References

  • G. Adilov, I. Yesilce, Some important properties of B-convex function. J. Nonlinear Convex Anal., 19(4) (2009) 669-680.
  • S.N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul de probabilities. Comm. Soc. Math. Kharkov, 13(2) (1912) 1-2.
  • A. M. Bruckner and E. Ostrow, Some function classes related to the class of Convex functions. Pacific Journal of Mathematics, 12(4) (1962) 1203-1215.
  • G. Z. Chang and P. J. Davis, The Convexity of Bernstein polynomials over triangles. Journal Approximation Theory, 40(1) (1984) 11-28.
  • A. Dinghas, Über einige identitaten vom Bernsteinschen typus. Det Koneglige Norske Videnskabers Selkab, 24(21) (1951) 96-97.
  • Z. Ditzian, Local saturation of modi ed Bernstein polynomials in K dimensions. Fourier Analysis and Approximation Theory, (1978) 291-306.
  • S. G. Gal, Shape-preserving approximation by real and complex polynomials. Springer Science, Business Media (2010).
  • T. H. Hildebrandt and I. J. Schoenberg, On linear functional operations and the moment Problem for a  nite interval in one or several dimensions. Annals of Mathematics, 34(2) (1933) 317-328.
  • Y.K. Hu and X.M. Yu, Copositive polynomial approximation revisited, in: Applied Mathematics Reviews (G.A. Anastassiou ed.), Vol. I, (2000) 157-174.
  • A. Kajla and M. Goyal, Modified Bernstein-Kantorovich operators for functions of one and two variables. Rendiconti Del Circolo Matematico Di Palermo Series 2(67) (2018). 379-395.
  • E. H. Kingsley, Bernstein polynomials for functions of two variables of class C (k). Proceedings of the American Mathematical Society, 12(1) (1951) 64-71.
  • L.M. Kocic and G.M. Milovanovic, Shape preserving approximation by polynomials and splines. Comput. Math. Appl., 33(11) (1997) 59-97.
  • D. Leviatan, Shape preserving approximation by polynomials and splines. in: Approximation Theory and Function Series, Proc. Int. Conf. Dedicated to K. Tandori, Budapest, 1995, Janos Bolyai Math. Soc., Bolyai Soc. Math. Stud. 5(1) (1996) 63-84.
  • D. Leviatan, Shape preserving approximation by polynomials. J. Comput. Appl. Math. 121(1-2) (2000).
  • G. G. Lorentz, Bernstein Polynomials. 2th edt.; AMS Chelsea Publishing; New York (1986).
  • L. Lupaş, A property of the S. N. Bernstein Operator. Mathematica (Cluj), 9(32) (1967) 299-301.
  • A. Lupaş, Some properties of the linear positive operators (III). Revue d' Analyse Numerique Theor. Approx., 3(1) (1974) 47-61.
  • J. Pal, Approksimation of konvekse funktioner ved konvekse polynomier, Mat. Tidsskrift, B, (1925) 60-65.
  • T. Popoviciu, Sur quelques proprietes des fonctions D'une ou de Deux variables reelles. Mathematica (Cluj). 8(1) (1934) 1-85.
  • T. Popoviciu, About the best polynomials aprroximation of continious functions. Mathematical Monography, Sect. Mat. Univ. Cluj, 3 (1937).
  • D. D. Stancu, On some polynomials of Bernstein type. Stud. Cerc. St. Mat. Ia si, 11, (1960) 221-233.
  • T. Tunç and G. Alhazzori, On Conic Equations Under Bernstein Operators. Bitlis Eren Universitesi Fen Bilimleri Dergisi, 13(1) (2024). 161-169.
  • T. Tunç and M. Uzun, On the preservation of the B-Convexity and B-Concavity of functions by Bernstein Operators. Journal of Contemporary Applied Mathematics, 10(2), (2020) 77-83.
  • T. Tunc and M. Uzun, B-convexity and B-concavity preserving property of two-dimensional Bernstein operators. 7th Int. IFS and Contemporary Mathematics Conf., May, 25-29, 2021, Türkiye, 1-7.
  • D. X. Zhou, Converse theorems for multidimensional Kantorovich operators. Analysis Mathematica, 19(1) (1993) 85-100.
There are 25 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

Esraa Dakak Elkahwa This is me 0009-0007-8587-0388

Tuncay Tunç 0000-0002-3061-7197

Early Pub Date October 29, 2025
Publication Date October 30, 2025
Submission Date May 10, 2025
Acceptance Date July 31, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Dakak Elkahwa, E., & Tunç, T. (2025). ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE. Maltepe Journal of Mathematics, 7(2), 47-62. https://doi.org/10.47087/mjm.1696453
AMA Dakak Elkahwa E, Tunç T. ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE. Maltepe Journal of Mathematics. October 2025;7(2):47-62. doi:10.47087/mjm.1696453
Chicago Dakak Elkahwa, Esraa, and Tuncay Tunç. “ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE”. Maltepe Journal of Mathematics 7, no. 2 (October 2025): 47-62. https://doi.org/10.47087/mjm.1696453.
EndNote Dakak Elkahwa E, Tunç T (October 1, 2025) ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE. Maltepe Journal of Mathematics 7 2 47–62.
IEEE E. Dakak Elkahwa and T. Tunç, “ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE”, Maltepe Journal of Mathematics, vol. 7, no. 2, pp. 47–62, 2025, doi: 10.47087/mjm.1696453.
ISNAD Dakak Elkahwa, Esraa - Tunç, Tuncay. “ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE”. Maltepe Journal of Mathematics 7/2 (October2025), 47-62. https://doi.org/10.47087/mjm.1696453.
JAMA Dakak Elkahwa E, Tunç T. ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE. Maltepe Journal of Mathematics. 2025;7:47–62.
MLA Dakak Elkahwa, Esraa and Tuncay Tunç. “ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE”. Maltepe Journal of Mathematics, vol. 7, no. 2, 2025, pp. 47-62, doi:10.47087/mjm.1696453.
Vancouver Dakak Elkahwa E, Tunç T. ANALYSIS OF CONICS UNDER KANTOROVICH OPERATORS OF TWO VARIABLE. Maltepe Journal of Mathematics. 2025;7(2):47-62.

Creative Commons License
The published articles in MJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2667-7660