Research Article
BibTex RIS Cite

Some integral inequalities via new family of preinvex functions

Year 2022, , 117 - 126, 30.06.2022
https://doi.org/10.53391/mmnsa.2022.010

Abstract

The main objective of this work is to introduce and define the concept of s-type m-preinvex function and derive the new sort of Hermite-Hadamard inequality via the newly discussed idea. Furthermore, to enhance the quality of paper, we prove two new lemmas and in order to these lemmas, we attain some extensions of Hermite-Hadamard-type inequality in the manner of newly explored definition. The concepts and tools of this paper may invigorate and revitalize for additional research in this mesmerizing and absorbing field of mathematics.

References

  • Hardy, G.H., Little, J.E., & Pólya, G. Inequalities, Cambridge, UK. Cambridge University Press. cambridge mathematical library, (1952).
  • Xi, B.Y., & Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. Journal of Function Spaces and Applications, 2012, Article ID 980438, 1-14, (2012).
  • Niculescu, C.P., & Persson, L.E. Convex functions and their applications (Vol. 23). Springer, New York, (2006).
  • Özcan, S., & İşcan, İ. Some new Hermite-Hadamard type integral inequalities for the s–convex functions and theirs applications. Journal of inequalities and applications, 2019(1), 1-11, (2019).
  • Khan, M.A., Chu, Y.M., Khan, T.U., & Khan, J. Some new inequalities of Hermite–Hadamard type for s–convex functions with applications. Open Mathematics, 15(1), 1414-1430, (2017).
  • Sahoo, S.K., Tariq, M., Ahmad, H., Nasir, J., Aydi, H., & Mukheimer, A. New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications. Symmetry, 13(8), 1429, (2021).
  • Sahoo, S.K., Ahmad, H., Tariq, M., Kodamasingh, B., Aydi, H., & De la Sen, M. Hermite–Hadamard type inequalities involving k-fractional operator for (h, m)-convex functions. Symmetry, 13(9), 1686, (2021).
  • Tariq, M., Ahmad, H., & Sahoo, S.K. The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type. Mathematical Modelling and Numerical Simulation with Applications, 1(1), 32-43, (2021).
  • Abdeljawad, T., Rashid, S., Hammouch, Z., & Chu, Y.M. Some new local fractional inequalities associated with generalized (s, m) (s, m)-convex functions and applications. Advances in Difference Equations, 2020(1), 1-27, (2020).
  • Tariq, M., Sahoo, S.K., Nasir, J., Aydi, H., & Alsamir, H. Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications. AIMS Mathematics, 6(12), 13272-13290, (2021).
  • Toader, G.H. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization (Vol. 329, p. 338). Cluj-Napoca, Romania: University of Cluj-Napoca, (1984, October).
  • Latif, M. A., & Shoaib, M. Hermite–Hadamard type integral inequalities for differentiable m-preinvex and (α, m)-preinvex functions. Journal of the Egyptian Mathematical Society, 23(2), 236-241, (2015).
  • Deng, Y., Kalsoom, H., & Wu, S. Some new Quantum Hermite-Hadamard-type estimates within a class of generalized (s, m)-preinvex functions. Symmetry, 11(10), 1283, (2019).
  • Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applications, 80(2), 545-550, (1981).
  • Weir, T., & Mond, B. Pre–inven functions in multiple objective optimization. Journal of Mathematical Analysis and applications, 136(1), 29-38, (1998).
  • Mititelu, S. Invex sets. Studii şi Cercetári Matematice., 46(5), 529–532, (1994).
  • Antczak, T. Mean value in invexity analysis. Nonlinear analysis: theory, methods & applications, 60(8), 1473-1484, (2005).
  • Du, T.S., Liao, J.G., & Li, Y.J. Properties and integral inequalities of Hadamard–Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl, 9(5), 3112-3126, (2016).
  • Rashid, S., İşcan, İ., Baleanu, D., & Chu, Y.M. Generation of new fractional inequalities via n polynomials s-type convexity with applications. Advances in Difference Equations, 2020(1), 1-20.
  • Mohan, S.R., & Neogy, S.K. On invex sets and preinvex functions. Journal of Mathematical Analysis and Applications, 189(3), 901-908, (1995).
  • Du, T.S., Liao, J., Chen, L., Awan, M.U. Properties and Riemann–Liouville fractional Hermite–Hadamard inequalities for the generalized (α, m)–preinvex functions. Journal of Inequalities and Applications, 2016(1), 1-24, (2016).
  • Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. Journal de mathématiques pures et appliquées, 58, 171-216, (1893).
Year 2022, , 117 - 126, 30.06.2022
https://doi.org/10.53391/mmnsa.2022.010

Abstract

References

  • Hardy, G.H., Little, J.E., & Pólya, G. Inequalities, Cambridge, UK. Cambridge University Press. cambridge mathematical library, (1952).
  • Xi, B.Y., & Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. Journal of Function Spaces and Applications, 2012, Article ID 980438, 1-14, (2012).
  • Niculescu, C.P., & Persson, L.E. Convex functions and their applications (Vol. 23). Springer, New York, (2006).
  • Özcan, S., & İşcan, İ. Some new Hermite-Hadamard type integral inequalities for the s–convex functions and theirs applications. Journal of inequalities and applications, 2019(1), 1-11, (2019).
  • Khan, M.A., Chu, Y.M., Khan, T.U., & Khan, J. Some new inequalities of Hermite–Hadamard type for s–convex functions with applications. Open Mathematics, 15(1), 1414-1430, (2017).
  • Sahoo, S.K., Tariq, M., Ahmad, H., Nasir, J., Aydi, H., & Mukheimer, A. New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications. Symmetry, 13(8), 1429, (2021).
  • Sahoo, S.K., Ahmad, H., Tariq, M., Kodamasingh, B., Aydi, H., & De la Sen, M. Hermite–Hadamard type inequalities involving k-fractional operator for (h, m)-convex functions. Symmetry, 13(9), 1686, (2021).
  • Tariq, M., Ahmad, H., & Sahoo, S.K. The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type. Mathematical Modelling and Numerical Simulation with Applications, 1(1), 32-43, (2021).
  • Abdeljawad, T., Rashid, S., Hammouch, Z., & Chu, Y.M. Some new local fractional inequalities associated with generalized (s, m) (s, m)-convex functions and applications. Advances in Difference Equations, 2020(1), 1-27, (2020).
  • Tariq, M., Sahoo, S.K., Nasir, J., Aydi, H., & Alsamir, H. Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications. AIMS Mathematics, 6(12), 13272-13290, (2021).
  • Toader, G.H. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization (Vol. 329, p. 338). Cluj-Napoca, Romania: University of Cluj-Napoca, (1984, October).
  • Latif, M. A., & Shoaib, M. Hermite–Hadamard type integral inequalities for differentiable m-preinvex and (α, m)-preinvex functions. Journal of the Egyptian Mathematical Society, 23(2), 236-241, (2015).
  • Deng, Y., Kalsoom, H., & Wu, S. Some new Quantum Hermite-Hadamard-type estimates within a class of generalized (s, m)-preinvex functions. Symmetry, 11(10), 1283, (2019).
  • Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. Journal of Mathematical Analysis and Applications, 80(2), 545-550, (1981).
  • Weir, T., & Mond, B. Pre–inven functions in multiple objective optimization. Journal of Mathematical Analysis and applications, 136(1), 29-38, (1998).
  • Mititelu, S. Invex sets. Studii şi Cercetári Matematice., 46(5), 529–532, (1994).
  • Antczak, T. Mean value in invexity analysis. Nonlinear analysis: theory, methods & applications, 60(8), 1473-1484, (2005).
  • Du, T.S., Liao, J.G., & Li, Y.J. Properties and integral inequalities of Hadamard–Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl, 9(5), 3112-3126, (2016).
  • Rashid, S., İşcan, İ., Baleanu, D., & Chu, Y.M. Generation of new fractional inequalities via n polynomials s-type convexity with applications. Advances in Difference Equations, 2020(1), 1-20.
  • Mohan, S.R., & Neogy, S.K. On invex sets and preinvex functions. Journal of Mathematical Analysis and Applications, 189(3), 901-908, (1995).
  • Du, T.S., Liao, J., Chen, L., Awan, M.U. Properties and Riemann–Liouville fractional Hermite–Hadamard inequalities for the generalized (α, m)–preinvex functions. Journal of Inequalities and Applications, 2016(1), 1-24, (2016).
  • Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. Journal de mathématiques pures et appliquées, 58, 171-216, (1893).
There are 22 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Articles
Authors

Muhammad Tariq This is me 0000-0001-8372-2532

Soubhagya Kumar Sahoo This is me 0000-0003-4524-1951

Hijaz Ahmad This is me 0000-0002-5438-5407

Asif Ali Shaikh This is me 0000-0002-3084-922X

Bibhakar Kodamasingh This is me 0000-0002-2751-7793

Dawood Khan This is me 0000-0002-6850-6783

Publication Date June 30, 2022
Submission Date April 24, 2022
Published in Issue Year 2022

Cite

APA Tariq, M., Sahoo, S. K., Ahmad, H., Shaikh, A. A., et al. (2022). Some integral inequalities via new family of preinvex functions. Mathematical Modelling and Numerical Simulation With Applications, 2(2), 117-126. https://doi.org/10.53391/mmnsa.2022.010


Math Model Numer Simul Appl - 2024 
29033      
The published articles in MMNSA are licensed under a Creative Commons Attribution 4.0 International License 
28520