Research Article
BibTex RIS Cite
Year 2023, , 202 - 213, 15.12.2023
https://doi.org/10.28978/nesciences.1405173

Abstract

Project Number

8681.

References

  • Abu-Rabeah, K., Marks, R.S. (2009). Impedance study of the hybrid molecule alginate–pyrrole: Demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor. Sensors and Actuators B, 136, 516–522. https://doi.org/10.1016/j.snb.2008.09.020
  • Chen, S., Fu, P., Yin, B., Yuan, R., Chai, Y., & Xiang, Y. (2011). Immobilizing Pt nanoparticles and chitosan hybrid film on polyaniline naofibers membrane for an amperometric hydrogen peroxide biosensor. Bioprocess and biosystems engineering, 34(6), 711-719. https://doi.org/10.1007/s00449-011-0520-4.
  • De Jesus, C.G., Lima, D., Santos, V., Wohnrath, K., Pessoa, C.A. (2013). Glucose biosensor based on the highly efficient immobilization of glucose oxidase on layer-by-layer films of silsesquioxane polyelectrolyte. Sensors and Actuators B, 186, 44–51. https://doi.org/10.1016/j.snb.2013.05.063.
  • Eftekhari, A. (2004). Electropolymerization of aniline onto passivated substrate and its application for preparation of enzyme-modified electrode. Synthetic Metals, 145, 211–216. https://doi.org/10.1016/j.synthmet.2004.05.016.
  • Ghica, M.E., & Brett, C.M.A. (2009). Poly (brilliant cresyl blue) modified glassy carbon electrodes: Electrosynthesis, characterisation and application in biosensors. Journal of Electroanalytical Chemistry, 629, 35–42. https://doi.org/10.1016/j.jelechem.2009.01.019.
  • Guo, M., Fang, H., Wang, R., Yang, Z., Xu, X., J. (2011). Electrodeposition of chitosan-glucose oxidase biocomposite onto Pt–Pb nanoparticles modified stainless steel needle electrode for amperometric glucose biosensor. Journal of Materials Science: Materials in Medicine, 22, 1958–1992. https://doi.org/10.1007/s10856-011-4363-y.
  • Haighi, B., Nazari, L., Sajjadi, S.M. (2012). Fabrication and Application of a Sensitive and Highly Stable Copper Hexacyanoferrate Modified Carbon Ionic Liquid Paste Electrode for Hydrogen Peroxide and Glucose Detection. Electroanalysis, 24, 2165–2175. https://doi.org/10.1002/elan.201200277.
  • Huang, S., Ding, Y., Liu, Y., Su, L., Filosa Jr, R., Lei, Y. (2011) Glucose Biosensor Using Glucose Oxidase and Electrospun Mn2O3-Ag Nanofibers. Electroanalysis, 23, 1912–1920. https://doi.org/10.1002/elan.201100221.
  • Hui, Y., Nan, L., Jhing-Zhong, X., Jun-Jie, Z., Chin. J. (2005). A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Chitosan Network Matrix. Chinese Journal of Chemistry, 23, 275–279. https://doi.org/10.1002/cjoc.200590275.
  • Jiang, Y., Zhang, Q., Li, F., Niu, L. (2012). Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application. Sensors and Actuators B, 161, 728–733. https://doi.org/10.1016/j.snb.2011.11.023.
  • Jung, S., & Lim, S. (2013). ZnO Nanowire-based Glucose Biosensors with Different Coupling Agents. Applied Surface Science, 265, 24–29. https://doi.org/10.1016/j.apsusc.2012.10.069.
  • Khun, K., Ibupoto, Z.H., Lu, J., AlSalhi, M.S., Atif, M., Ansari, A., Willander, M. (2012). Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode. Sensors and Actuators B, 173, 698–703. https://doi.org/10.1016/j.snb.2012.07.074.
  • Li, J., Yuan, R., Chai, Y., Che, X., Li, W. (2012). Construction of an amperometric glucose biosensor based on the immobilization of glucose oxidase onto electrodeposited Pt nanoparticles-chitosan composite film. Bioprocess and Biosystems Engineering, 35, 1089–1095. https://doi.org/10.1007/s00449-012-0693-5.
  • Salimi, A., & Noorbakhsh, A. (2011). Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor. Electrochimica Acta, 56, 6097–6105. https://doi.org/10.1016/j.electacta.2011.04.073.
  • Ozdemir, C., Yeni, F., Odaci, D., Timur, S. (2010). Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chemistry, 119, 380–385. https://doi.org/10.1016/j.foodchem.2009.05.087.
  • Ozyilmaz, G., Ozyilmaz, A.T., Can, F. (2011). Glucose Oxidasepolypyrrole Electrodes Synthesized in pToluenesulfonic Acid and Sodium pToluenesulfonate. Applied Biochemistry and Microbiology, 47, 217–225. https://doi.org/10.1134/S0003683811020153.
  • Ozyilmaz, G., Ozyilmaz, A.T., Akyürekoğlu, R.H. (2017). Poly(N-Methylpyrrole)-Chitosan layers for Glucose Oxidase Immobilization for Amperometric Glucose Biosensor Design. Natural and Engineering Sciences, 2, 123–134. https://doi.org/10.28978/nesciences.354825.
  • Ozyilmaz, G., Ozyilmaz, A.T., Ağçam, S. (2018). Using Response Surface Methodology for Amperometric Glucose Biosensor Construction. Natural and Engineering Sciences, 3, 1–15. https://doi.org/10.28978/nesciences.379311.
  • Pauliukaite, R., Paquim, A.M.C., Brett, A.M.O., Brett, C.M.A. (2006). Electrochemical, EIS and AFM characterisation of biosensors: Trioxysilane sol–gel encapsulated glucose oxidase with two different redox mediators. Electrochimica Acta, 52, 1–8. https://doi.org/10.1016/j.electacta.2006.03.081.
  • Raicopol, M., Prună, A., Damian, C., Pilan, L. (2013). Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Research Letters, 8, 1–8. https://doi.org/10.1186/1556-276X-8-316.
  • Savale, P.A., Shirsat, M.D. (2009). Synthesis of Poly(o-anisidine)/H2SO4 Film for the Development of Glucose Biosensor. Applied Biochemistry and Biotechnology, 159, 299–309. https://doi.org/10.1007/s12010-008-8135-1.
  • Shervedani, R.K., Hatefi-Mehrjardi, A. (2007). Electrochemical characterization of directly immobilized glucose oxidase on gold mercaptosuccinic anhydride self-assembled monolayer. Sensors and Actuators B, 126, 415–423. https://doi.org/10.1016/j.snb.2007.03.023.
  • Uang, Y.M., Chou, T.C. (2003). Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions. Biosensors and Bioelectronics, 19, 141–147. https://doi.org/10.1016/S0956-5663(03)00168-4.
  • Wang, L., Gao, X., Jin, L., Wu, Q., Chen, Z., Lin, X. (2013). Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sensors and Actuators B, 176, 9–14. https://doi.org/10.1016/j.snb.2012.08.077.
  • Yağız, E., Ozyilmaz G., Ozyilmaz A.T. (2023). Response Ssurface Methodology use in construction of polyaniline coated carbon paste electrode–based biosensor: Modification and characterization. Biotechnology and Applied Biochemistry, In press. https://doi.org/10.1002/bab.2528.
  • Yu, E. H., & Sundmacher, K. (2007). Enzyme electrodes for glucose oxidation prepared by electropolymerization of pyrrole. Process Safety and Environmental Protection, 85(5), 489-493. https://doi.org/10.1205/psep07031.
  • Zhang Y, Liu Y, Chu Z, Shi L, Jin W, (2013), Amperometric glucose biosensor based on direct assembly of Prussian blue film with ionic liquid-chitosan matrix assisted enzyme immobilization. Sensors and Actuators B, 176, 978–984. https://doi.org/10.1016/j.snb.2012.09.080.

Glucose-Sensitive Biosensor Design by Zinc Ferrite (ZnFe2O4) Nanoparticle-Modified Poly (o-toluidine) Film

Year 2023, , 202 - 213, 15.12.2023
https://doi.org/10.28978/nesciences.1405173

Abstract

Glucose oxidase (GOD) immobilized poly(o-toluidine) (POT) coated Pt electrode was designed for glucose-sensitive biosensor. Since POT film structure affects enzyme activity, parameters of enzyme immobilization and POT synthesis conditions were optimized. Optimal monomer concentration for POT film synthesis was determined as 40 mM and the scanning rate was determined as 50 mV/s. As for the immobilization process results, GOD, glutaraldehyde (GAL) and chitosan (Chi) concentrations were decided as 2 mg/ml 0.10%, and 0.5% for the Pt/POT electrode. Zinc ferrite nanoparticle (ZnFe2O4NP) was immobilized together with POT film in the presence of GOD enzyme. It was revealed that ZnFe2O4NP increased the current responses and stability of the Pt/POT electrode.

Supporting Institution

Scientific Research Units of The University of Mustafa Kemal

Project Number

8681.

Thanks

This study was funded by Scientific Research Units of The University of Mustafa Kemal in Turkey, Project no: 8681.

References

  • Abu-Rabeah, K., Marks, R.S. (2009). Impedance study of the hybrid molecule alginate–pyrrole: Demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor. Sensors and Actuators B, 136, 516–522. https://doi.org/10.1016/j.snb.2008.09.020
  • Chen, S., Fu, P., Yin, B., Yuan, R., Chai, Y., & Xiang, Y. (2011). Immobilizing Pt nanoparticles and chitosan hybrid film on polyaniline naofibers membrane for an amperometric hydrogen peroxide biosensor. Bioprocess and biosystems engineering, 34(6), 711-719. https://doi.org/10.1007/s00449-011-0520-4.
  • De Jesus, C.G., Lima, D., Santos, V., Wohnrath, K., Pessoa, C.A. (2013). Glucose biosensor based on the highly efficient immobilization of glucose oxidase on layer-by-layer films of silsesquioxane polyelectrolyte. Sensors and Actuators B, 186, 44–51. https://doi.org/10.1016/j.snb.2013.05.063.
  • Eftekhari, A. (2004). Electropolymerization of aniline onto passivated substrate and its application for preparation of enzyme-modified electrode. Synthetic Metals, 145, 211–216. https://doi.org/10.1016/j.synthmet.2004.05.016.
  • Ghica, M.E., & Brett, C.M.A. (2009). Poly (brilliant cresyl blue) modified glassy carbon electrodes: Electrosynthesis, characterisation and application in biosensors. Journal of Electroanalytical Chemistry, 629, 35–42. https://doi.org/10.1016/j.jelechem.2009.01.019.
  • Guo, M., Fang, H., Wang, R., Yang, Z., Xu, X., J. (2011). Electrodeposition of chitosan-glucose oxidase biocomposite onto Pt–Pb nanoparticles modified stainless steel needle electrode for amperometric glucose biosensor. Journal of Materials Science: Materials in Medicine, 22, 1958–1992. https://doi.org/10.1007/s10856-011-4363-y.
  • Haighi, B., Nazari, L., Sajjadi, S.M. (2012). Fabrication and Application of a Sensitive and Highly Stable Copper Hexacyanoferrate Modified Carbon Ionic Liquid Paste Electrode for Hydrogen Peroxide and Glucose Detection. Electroanalysis, 24, 2165–2175. https://doi.org/10.1002/elan.201200277.
  • Huang, S., Ding, Y., Liu, Y., Su, L., Filosa Jr, R., Lei, Y. (2011) Glucose Biosensor Using Glucose Oxidase and Electrospun Mn2O3-Ag Nanofibers. Electroanalysis, 23, 1912–1920. https://doi.org/10.1002/elan.201100221.
  • Hui, Y., Nan, L., Jhing-Zhong, X., Jun-Jie, Z., Chin. J. (2005). A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Chitosan Network Matrix. Chinese Journal of Chemistry, 23, 275–279. https://doi.org/10.1002/cjoc.200590275.
  • Jiang, Y., Zhang, Q., Li, F., Niu, L. (2012). Glucose oxidase and graphene bionanocomposite bridged by ionic liquid unit for glucose biosensing application. Sensors and Actuators B, 161, 728–733. https://doi.org/10.1016/j.snb.2011.11.023.
  • Jung, S., & Lim, S. (2013). ZnO Nanowire-based Glucose Biosensors with Different Coupling Agents. Applied Surface Science, 265, 24–29. https://doi.org/10.1016/j.apsusc.2012.10.069.
  • Khun, K., Ibupoto, Z.H., Lu, J., AlSalhi, M.S., Atif, M., Ansari, A., Willander, M. (2012). Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode. Sensors and Actuators B, 173, 698–703. https://doi.org/10.1016/j.snb.2012.07.074.
  • Li, J., Yuan, R., Chai, Y., Che, X., Li, W. (2012). Construction of an amperometric glucose biosensor based on the immobilization of glucose oxidase onto electrodeposited Pt nanoparticles-chitosan composite film. Bioprocess and Biosystems Engineering, 35, 1089–1095. https://doi.org/10.1007/s00449-012-0693-5.
  • Salimi, A., & Noorbakhsh, A. (2011). Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor. Electrochimica Acta, 56, 6097–6105. https://doi.org/10.1016/j.electacta.2011.04.073.
  • Ozdemir, C., Yeni, F., Odaci, D., Timur, S. (2010). Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chemistry, 119, 380–385. https://doi.org/10.1016/j.foodchem.2009.05.087.
  • Ozyilmaz, G., Ozyilmaz, A.T., Can, F. (2011). Glucose Oxidasepolypyrrole Electrodes Synthesized in pToluenesulfonic Acid and Sodium pToluenesulfonate. Applied Biochemistry and Microbiology, 47, 217–225. https://doi.org/10.1134/S0003683811020153.
  • Ozyilmaz, G., Ozyilmaz, A.T., Akyürekoğlu, R.H. (2017). Poly(N-Methylpyrrole)-Chitosan layers for Glucose Oxidase Immobilization for Amperometric Glucose Biosensor Design. Natural and Engineering Sciences, 2, 123–134. https://doi.org/10.28978/nesciences.354825.
  • Ozyilmaz, G., Ozyilmaz, A.T., Ağçam, S. (2018). Using Response Surface Methodology for Amperometric Glucose Biosensor Construction. Natural and Engineering Sciences, 3, 1–15. https://doi.org/10.28978/nesciences.379311.
  • Pauliukaite, R., Paquim, A.M.C., Brett, A.M.O., Brett, C.M.A. (2006). Electrochemical, EIS and AFM characterisation of biosensors: Trioxysilane sol–gel encapsulated glucose oxidase with two different redox mediators. Electrochimica Acta, 52, 1–8. https://doi.org/10.1016/j.electacta.2006.03.081.
  • Raicopol, M., Prună, A., Damian, C., Pilan, L. (2013). Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Research Letters, 8, 1–8. https://doi.org/10.1186/1556-276X-8-316.
  • Savale, P.A., Shirsat, M.D. (2009). Synthesis of Poly(o-anisidine)/H2SO4 Film for the Development of Glucose Biosensor. Applied Biochemistry and Biotechnology, 159, 299–309. https://doi.org/10.1007/s12010-008-8135-1.
  • Shervedani, R.K., Hatefi-Mehrjardi, A. (2007). Electrochemical characterization of directly immobilized glucose oxidase on gold mercaptosuccinic anhydride self-assembled monolayer. Sensors and Actuators B, 126, 415–423. https://doi.org/10.1016/j.snb.2007.03.023.
  • Uang, Y.M., Chou, T.C. (2003). Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions. Biosensors and Bioelectronics, 19, 141–147. https://doi.org/10.1016/S0956-5663(03)00168-4.
  • Wang, L., Gao, X., Jin, L., Wu, Q., Chen, Z., Lin, X. (2013). Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sensors and Actuators B, 176, 9–14. https://doi.org/10.1016/j.snb.2012.08.077.
  • Yağız, E., Ozyilmaz G., Ozyilmaz A.T. (2023). Response Ssurface Methodology use in construction of polyaniline coated carbon paste electrode–based biosensor: Modification and characterization. Biotechnology and Applied Biochemistry, In press. https://doi.org/10.1002/bab.2528.
  • Yu, E. H., & Sundmacher, K. (2007). Enzyme electrodes for glucose oxidation prepared by electropolymerization of pyrrole. Process Safety and Environmental Protection, 85(5), 489-493. https://doi.org/10.1205/psep07031.
  • Zhang Y, Liu Y, Chu Z, Shi L, Jin W, (2013), Amperometric glucose biosensor based on direct assembly of Prussian blue film with ionic liquid-chitosan matrix assisted enzyme immobilization. Sensors and Actuators B, 176, 978–984. https://doi.org/10.1016/j.snb.2012.09.080.
There are 27 citations in total.

Details

Primary Language English
Subjects Structural Biology, Environmental Biotechnology (Other)
Journal Section Articles
Authors

Ali Tuncay Ozyilmaz 0000-0002-3657-8117

Esiye Irem Bayram This is me 0000-0003-4076-6724

Project Number 8681.
Publication Date December 15, 2023
Submission Date June 22, 2023
Published in Issue Year 2023

Cite

APA Ozyilmaz, A. T., & Bayram, E. I. (2023). Glucose-Sensitive Biosensor Design by Zinc Ferrite (ZnFe2O4) Nanoparticle-Modified Poly (o-toluidine) Film. Natural and Engineering Sciences, 8(3), 202-213. https://doi.org/10.28978/nesciences.1405173

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015