Year 2024,
, 198 - 212, 30.10.2024
Liu Zigui
Felicito Caluyo
,
Rowell Hernandez
Jeffrey Sarmiento
Cristina Amor Rosales
References
- Adil, M., Khan, R., Almaiah, M. A., Binsawad, M., Ali, J., Al Saaidah, A., & Ta, Q. T. H. (2020). An efficient load balancing scheme of energy gauge nodes to maximize the lifespan of constraint oriented networks. IEEE Access, 8, 148510-148527.
- Bai, L., Zhu, L., Liu, J., Choi, J., & Zhang, W. (2020). Physical layer authentication in wireless communication networks: A survey. Journal of Communications and Information Networks, 5(3), 237-264.
- Bansal, S., & Kumar, D. (2020). IoT ecosystem: A survey on devices, gateways, operating systems, middleware, and communication. International Journal of Wireless Information Networks, 27(3), 340-364.
- Chang, K. C., Chu, K. C., Wang, H. C., Lin, Y. C., & Pan, J. S. (2020). Energy saving technology of 5G base station based on internet of things collaborative control. IEEE Access, 8, 32935-32946. https://doi.org/10.1109/ACCESS.2020.2973648
- Cruz-Paredes, C., Tájmel, D., & Rousk, J. (2021). Can moisture affect temperature dependences of microbial growth and respiration?. Soil Biology and Biochemistry, 156, 108223. https://doi.org/10.1016/j.soilbio.2021.108223
- Escher, B. I., Stapleton, H. M., & Schymanski, E. L. (2020). Tracking complex mixtures of chemicals in our changing environment. Science, 367(6476), 388-392.
- Gawre, S. K. (2022). Advanced fault diagnosis and condition monitoring schemes for solar PV systems. In Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid: Modeling, Control and Optimization, 27-59. Singapore: Springer Nature Singapore.
- Hong, W., Xu, B., Chi, X., Cui, X., Yan, Y., & Li, T. (2020). Long-term and extensive monitoring for bee colonies based on the Internet of Things. IEEE Internet of Things Journal, 7(8), 7148-7155.
- Jiménez‐Hernández, E. M., Oktaba, H., Díaz‐Barriga, F., & Piattini, M. (2020). Using web‐based gamified software to learn Boolean algebra simplification in a blended learning setting. Computer Applications in Engineering Education, 28(6), 1591-1611.
- Kane, M. B., Peckens, C., & Lynch, J. P. (2022). Introduction to wireless sensor networks for monitoring applications: principles, design, and selection. In Sensor Technologies for Civil Infrastructures, 335-368. Woodhead Publishing.
- Li, Y., Yang, G., Su, Z., Li, S., & Wang, Y. (2023). Human activity recognition based on multienvironment sensor data. Information Fusion, 91, 47-63.
- Liu, H., Kong, F., Yin, H., Middel, A., Zheng, X., Huang, J., & Wen, Z. (2021). Impacts of green roofs on water, temperature, and air quality: A bibliometric review. Building and Environment, 196, 107794. https://doi.org/10.1016/j.buildenv.2021.107794
- Liu, X., Lu, D., Zhang, A., Liu, Q., & Jiang, G. (2022). Data-driven machine learning in environmental pollution: gains and problems. Environmental science & technology, 56(4), 2124-2133.
- Maoudj, A., & Hentout, A. (2020). Optimal path planning approach based on Q-learning algorithm for mobile robots. Applied Soft Computing, 97, 106796. https://doi.org/10.1016/j.asoc.2020.106796
- Prottasha, N. J., Sami, A. A., Kowsher, M., Murad, S. A., Bairagi, A. K., Masud, M., & Baz, M. (2022). Transfer learning for sentiment analysis using BERT based supervised fine-tuning. Sensors, 22(11), 4157. https://doi.org/10.3390/s22114157
- Rao, S. P., Chen, H. Y., & Aura, T. (2023). Threat modeling framework for mobile communication systems. Computers & Security, 125, 103047. https://doi.org/10.1016/j.cose.2022.103047
- Tang, C., Luktarhan, N., & Zhao, Y. (2020). SAAE-DNN: Deep learning method on intrusion detection. Symmetry, 12(10), 1695. https://doi.org/10.3390/sym12101695
- Thomas, N. (2020). Immigration: The “illegal alien” problem. International Journal of Group Psychotherapy, 70(2), 270-292.
- Turgut, Y., & Bozdag, C. E. (2020). Deep Q-network model for dynamic job shop scheduling problem based on discrete event simulation. In IEEE Winter Simulation Conference (WSC), 1551-1559.
- Zhao, M., Lu, H., Yang, S., & Guo, F. (2020). The experience-memory Q-learning algorithm for robot path planning in unknown environment. IEEE Access, 8, 47824-47844. https://doi.org/10.1109/ACCESS.2020.2978077
Improving Communication Networks to Transfer Data in Real Time for Environmental Monitoring and Data Collection
Year 2024,
, 198 - 212, 30.10.2024
Liu Zigui
Felicito Caluyo
,
Rowell Hernandez
Jeffrey Sarmiento
Cristina Amor Rosales
Abstract
Integrated communication networks (CN) have proven successful in tracking environmental activities, wherein several sensors are installed throughout diverse surroundings to gather data or observe certain events. CNs, comprising several interacting detectors, have proven effective in various applications by transmitting data via diverse transmission methods inside the communication system. The erratic and constantly changing surroundings necessitate conventional CNs to engage in frequent conversations to disseminate the latest data, potentially incurring substantial connection expenses through joint data gathering and dissemination. High-frequency communications are prone to failure due to the extensive distance of data transfer. This research presents a unique methodology for multi-sensor environmental monitoring networks utilizing autonomous systems. The transmission system can mitigate elevated communication costs and Single Point of Failing (SPOF) challenges by employing a decentralized method that facilitates in-network processing. The methodology employs Boolean systems, enabling a straightforward verification process while preserving essential details about the dynamics of the communication system. The methodology further simplifies the data collection process and employs a Reinforcement Learning (RL) technique to forecast future events inside the surroundings by recognizing patterns.
References
- Adil, M., Khan, R., Almaiah, M. A., Binsawad, M., Ali, J., Al Saaidah, A., & Ta, Q. T. H. (2020). An efficient load balancing scheme of energy gauge nodes to maximize the lifespan of constraint oriented networks. IEEE Access, 8, 148510-148527.
- Bai, L., Zhu, L., Liu, J., Choi, J., & Zhang, W. (2020). Physical layer authentication in wireless communication networks: A survey. Journal of Communications and Information Networks, 5(3), 237-264.
- Bansal, S., & Kumar, D. (2020). IoT ecosystem: A survey on devices, gateways, operating systems, middleware, and communication. International Journal of Wireless Information Networks, 27(3), 340-364.
- Chang, K. C., Chu, K. C., Wang, H. C., Lin, Y. C., & Pan, J. S. (2020). Energy saving technology of 5G base station based on internet of things collaborative control. IEEE Access, 8, 32935-32946. https://doi.org/10.1109/ACCESS.2020.2973648
- Cruz-Paredes, C., Tájmel, D., & Rousk, J. (2021). Can moisture affect temperature dependences of microbial growth and respiration?. Soil Biology and Biochemistry, 156, 108223. https://doi.org/10.1016/j.soilbio.2021.108223
- Escher, B. I., Stapleton, H. M., & Schymanski, E. L. (2020). Tracking complex mixtures of chemicals in our changing environment. Science, 367(6476), 388-392.
- Gawre, S. K. (2022). Advanced fault diagnosis and condition monitoring schemes for solar PV systems. In Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid: Modeling, Control and Optimization, 27-59. Singapore: Springer Nature Singapore.
- Hong, W., Xu, B., Chi, X., Cui, X., Yan, Y., & Li, T. (2020). Long-term and extensive monitoring for bee colonies based on the Internet of Things. IEEE Internet of Things Journal, 7(8), 7148-7155.
- Jiménez‐Hernández, E. M., Oktaba, H., Díaz‐Barriga, F., & Piattini, M. (2020). Using web‐based gamified software to learn Boolean algebra simplification in a blended learning setting. Computer Applications in Engineering Education, 28(6), 1591-1611.
- Kane, M. B., Peckens, C., & Lynch, J. P. (2022). Introduction to wireless sensor networks for monitoring applications: principles, design, and selection. In Sensor Technologies for Civil Infrastructures, 335-368. Woodhead Publishing.
- Li, Y., Yang, G., Su, Z., Li, S., & Wang, Y. (2023). Human activity recognition based on multienvironment sensor data. Information Fusion, 91, 47-63.
- Liu, H., Kong, F., Yin, H., Middel, A., Zheng, X., Huang, J., & Wen, Z. (2021). Impacts of green roofs on water, temperature, and air quality: A bibliometric review. Building and Environment, 196, 107794. https://doi.org/10.1016/j.buildenv.2021.107794
- Liu, X., Lu, D., Zhang, A., Liu, Q., & Jiang, G. (2022). Data-driven machine learning in environmental pollution: gains and problems. Environmental science & technology, 56(4), 2124-2133.
- Maoudj, A., & Hentout, A. (2020). Optimal path planning approach based on Q-learning algorithm for mobile robots. Applied Soft Computing, 97, 106796. https://doi.org/10.1016/j.asoc.2020.106796
- Prottasha, N. J., Sami, A. A., Kowsher, M., Murad, S. A., Bairagi, A. K., Masud, M., & Baz, M. (2022). Transfer learning for sentiment analysis using BERT based supervised fine-tuning. Sensors, 22(11), 4157. https://doi.org/10.3390/s22114157
- Rao, S. P., Chen, H. Y., & Aura, T. (2023). Threat modeling framework for mobile communication systems. Computers & Security, 125, 103047. https://doi.org/10.1016/j.cose.2022.103047
- Tang, C., Luktarhan, N., & Zhao, Y. (2020). SAAE-DNN: Deep learning method on intrusion detection. Symmetry, 12(10), 1695. https://doi.org/10.3390/sym12101695
- Thomas, N. (2020). Immigration: The “illegal alien” problem. International Journal of Group Psychotherapy, 70(2), 270-292.
- Turgut, Y., & Bozdag, C. E. (2020). Deep Q-network model for dynamic job shop scheduling problem based on discrete event simulation. In IEEE Winter Simulation Conference (WSC), 1551-1559.
- Zhao, M., Lu, H., Yang, S., & Guo, F. (2020). The experience-memory Q-learning algorithm for robot path planning in unknown environment. IEEE Access, 8, 47824-47844. https://doi.org/10.1109/ACCESS.2020.2978077