Research Article
BibTex RIS Cite

Comparative Study to the Sternal Region in Scorpions and Spiders

Year 2024, Volume: 9 Issue: 3, 52 - 68, 31.12.2024
https://doi.org/10.28978/nesciences.1606427

Abstract

This study investigates the coxosternal or ventral sternal region, in scorpions and spiders. We col-lected 10 specimens of Scorpions from provinces Baghdad in region Abo Kreab and Salahuddin provinces in Tikrit then 7 specimens of Spiders were collected from variant regions in provinces Baghdad and various genera and families were collected and processed for examination. The aim was to compare the morphology of the coxosternal between these two arachnid groups and analyze the underlying functional and evolutionary implications of any structural variations. So the result of this study on coxosternal region of scorpions in the Family: Buthidae like Androctonus crassicau-da, is not wide the majority of members of this family have a triangular cut and the female genital cover is divided, coxosternal region in Orthochirus scrobiculosus do not extend forward and do not form lobes, edges of the scales grainy and it is finely grained the majority of individuals have a tri-angular cut, Mesobuthus eupeus the ventral side is shiny and wide with strong hairs and the ster-num is triangular, coxosternal region in Family: Scorpionidae like Scorpio Maurus in the ventral side do not have lobes extending forward, the sternum is pentagonal. But in Family: Salticidae of spiders the coxosternal region in Hasarius adansoni, are oval shape sternum or variable in Thyene imperialis, and Evarcha seyun, are circle shape sternum or variable, coxosternal region in Ne-oscona subfusca, family Araniedae are heart-shaped or triangular. The expected results include identifying distinct coxosternal shapes in scorpions compared to spiders. These variations might be linked to specific Roles like locomotion and internal organ protection. The determined geomor-phology gets to render Understandings into the evolutionary relationships betwixt scorpions and spiders. This comparative analysis is expected to Add to a better understanding of how the cox-osternal plays a role in the biology of scorpions and spiders. The known variations get bid im-portant information along the development and practical adjustations inside these arachnids

References

  • Al-Azawi, Z. N., & Bassat, S. F. (2016). Taxonomic study of Androctonus crassicauda (Olivier, 1807) (Scorpiones: Buthidae) in Iraq. Bulletin of the Iraq Natural History Museum, 14(1), 13-25.
  • Baptista, C., Santiago-Blay, J. A., Fet, V., & Soleglad, M. E. (2006). The cretaceous scorpion genus, Archaeobuthus, revisited (Scorpiones: Archaeobuthidae). Euscorpius, 2006(35), 1-40.
  • Bouret Campos, D. R. (1986). Primeiro registro fóssil de Scorpionoidea na chapada do Araripe (Cre-táceo Inferior), Brasil. Anais da Academia Brasileira de Ciências, 58(1), 135-137.
  • Di, Z., Edgecombe, G. D., & Sharma, P. P. (2018). Homeosis in a scorpion supports a telopodal origin of pectines and components of the book lungs. BMC evolutionary biology, 18, 1-7. https://doi.org/10.1186/s12862-018-1188-z
  • Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod structure & devel-opment, 39(2-3), 124-142. https://doi.org/10.1016/j.asd.2010.01.003
  • Dunlop, J. A., & Braddy, S. J. (2001). Scorpions and their sister group relationships. In Scorpions (pp. 1-24). British Arachnological Society.
  • Dunlop, J. A., & Selden, P. A. (2013). Scorpion fragments from the Silurian of Powys, Wales. Arachnology, 16(1), 27-32. https://doi.org/10.13156/arac.2013.16.1.27
  • Dunlop, J., Borner, J., & Burmester, T. (2014). 16 Phylogeny of the Chelicerates: Morphological and molecular evidence. In Deep Metazoan Phylogeny The Backbone of the Tree of Life New insights from analyses of molecules, morphology, and theory of data analysis. Berlin Boston: de Gruyter. https://doi.org/10.1515/9783110277524.399
  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high through-put. Nucleic acids research, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh340
  • Herbst, J. F. (1797). Natursystem aller bekannten in-und auslandischen. kafer, 7, 1-346.
  • Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: improv-ing the ultrafast bootstrap approximation. Molecular biology and evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281
  • Isbister, G. K., & Bawaskar, H. S. (2014). Scorpion envenomation. New England journal of medi-cine, 371(5), 457-463. https://doi.org/10.1056/NEJMra1401108
  • Jago, J. B., García‐Bellido, D. C., & Gehling, J. G. (2016). An early C ambrian chelicerate from the E mu B ay S hale, S outh A ustralia. Palaeontology, 59(4), 549-562. https://doi.org/10.1111/pala.12243
  • Jocqué, R., & Dippenaar-Schoeman, A. S. (2006). Spider families of the world.
  • Kovarik, F. (1999). Review of European scorpions, with a key to species. Sekret, 6(2), 38-44.
  • Kovarik, F. (2009). IIIustrated catalog of scorpions Part 1, Introduction remarks, keys to families, gen-era and species. Prague. Clavion. Prod, 170.
  • Kück, P., & Meusemann, K. (2010). FASconCAT: convenient handling of data matrices. Molecular phylogenetics and evolution, 56(3), 1115-1118. https://doi.org/10.1016/j.ympev.2010.04.024
  • Lourenço, W. R. (2016). A preliminary synopsis on amber scorpions with special reference to Burmite species: an extraordinary development of our knowledge in only 20 years. Zookeys, (600), 75-87. https://doi.org/10.3897/zookeys.600.8913
  • Lourenço, W. R., & Gall, J. C. (2004). Fossil scorpions from the Buntsandstein (early Triassic) of France. Comptes Rendus Palevol, 3(5), 369-378.
  • Martill, D. M., Bechly, G., & Loveridge, R. F. (2007). The Crato fossil beds of Brazil: window into an ancient world. Cambridge University Press. https://doi.org/10.1017/CBO9780511535512
  • Menon, F. (2007). Higher systematics of scorpions from the Crato Formation, Lower Cretaceous of Brazil. Palaeontology, 50(1), 185-195. https://doi.org/10.1111/j.1475-4983.2006.00605.x
  • Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular biology and evolution, 30(5), 1188-1195. https://doi.org/10.1093/molbev/mst024
  • Nentwig, W., Blick, T., Bosmans, R., Gloor, D., Hänggi, A., & Kropf, C. (2021). araneae–Spiders of Europe. Version 02.2021. Internet: https://www.araneae.nmbe. https://doi.org/10.24436/1
  • Pepato, A. R., da Rocha, C. E., & Dunlop, J. A. (2010). Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evolutionary Biology, 10, 1-23. https://doi.org/10.1186/1471-2148-10-235
  • Perry, M. L. (1995). Preliminary Description of a New Fossil Scorpion from the Middle Eocene, Green River Formation, Rio Blanco County, Colorado.
  • Pocock, R. I. (1888). XXXII.—On the African specimens of the genus Scorpio (Linn.) contained in the collection of the British Museum. Journal of Natural History, 2(9), 245-255. https://doi.org/10.1080/00222938809460919
  • Pointon, M. A., Chew, D. M., Ovtcharova, M., Sevastopulo, G. D., & Crowley, Q. G. (2012). New high-precision U–Pb dates from western European Carboniferous tuffs; implications for time scale calibration, the periodicity of late Carboniferous cycles and stratigraphical correla-tion. Journal of the Geological Society, 169(6), 713-721.
  • Polis, G. A. (Ed.). (1990). The biology of scorpions (pp. xxiii+-587).
  • Poschmann, M., Dunlop, J. A., Kamenz, C., & Scholtz, G. (2008). The Lower Devonian scorpion Waeringoscorpio and the respiratory nature of its filamentous structures, with the description of a new species from the Westerwald area, Germany. Paläontologische Zeitschrift, 82, 418-436.
Year 2024, Volume: 9 Issue: 3, 52 - 68, 31.12.2024
https://doi.org/10.28978/nesciences.1606427

Abstract

References

  • Al-Azawi, Z. N., & Bassat, S. F. (2016). Taxonomic study of Androctonus crassicauda (Olivier, 1807) (Scorpiones: Buthidae) in Iraq. Bulletin of the Iraq Natural History Museum, 14(1), 13-25.
  • Baptista, C., Santiago-Blay, J. A., Fet, V., & Soleglad, M. E. (2006). The cretaceous scorpion genus, Archaeobuthus, revisited (Scorpiones: Archaeobuthidae). Euscorpius, 2006(35), 1-40.
  • Bouret Campos, D. R. (1986). Primeiro registro fóssil de Scorpionoidea na chapada do Araripe (Cre-táceo Inferior), Brasil. Anais da Academia Brasileira de Ciências, 58(1), 135-137.
  • Di, Z., Edgecombe, G. D., & Sharma, P. P. (2018). Homeosis in a scorpion supports a telopodal origin of pectines and components of the book lungs. BMC evolutionary biology, 18, 1-7. https://doi.org/10.1186/s12862-018-1188-z
  • Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod structure & devel-opment, 39(2-3), 124-142. https://doi.org/10.1016/j.asd.2010.01.003
  • Dunlop, J. A., & Braddy, S. J. (2001). Scorpions and their sister group relationships. In Scorpions (pp. 1-24). British Arachnological Society.
  • Dunlop, J. A., & Selden, P. A. (2013). Scorpion fragments from the Silurian of Powys, Wales. Arachnology, 16(1), 27-32. https://doi.org/10.13156/arac.2013.16.1.27
  • Dunlop, J., Borner, J., & Burmester, T. (2014). 16 Phylogeny of the Chelicerates: Morphological and molecular evidence. In Deep Metazoan Phylogeny The Backbone of the Tree of Life New insights from analyses of molecules, morphology, and theory of data analysis. Berlin Boston: de Gruyter. https://doi.org/10.1515/9783110277524.399
  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high through-put. Nucleic acids research, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh340
  • Herbst, J. F. (1797). Natursystem aller bekannten in-und auslandischen. kafer, 7, 1-346.
  • Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: improv-ing the ultrafast bootstrap approximation. Molecular biology and evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281
  • Isbister, G. K., & Bawaskar, H. S. (2014). Scorpion envenomation. New England journal of medi-cine, 371(5), 457-463. https://doi.org/10.1056/NEJMra1401108
  • Jago, J. B., García‐Bellido, D. C., & Gehling, J. G. (2016). An early C ambrian chelicerate from the E mu B ay S hale, S outh A ustralia. Palaeontology, 59(4), 549-562. https://doi.org/10.1111/pala.12243
  • Jocqué, R., & Dippenaar-Schoeman, A. S. (2006). Spider families of the world.
  • Kovarik, F. (1999). Review of European scorpions, with a key to species. Sekret, 6(2), 38-44.
  • Kovarik, F. (2009). IIIustrated catalog of scorpions Part 1, Introduction remarks, keys to families, gen-era and species. Prague. Clavion. Prod, 170.
  • Kück, P., & Meusemann, K. (2010). FASconCAT: convenient handling of data matrices. Molecular phylogenetics and evolution, 56(3), 1115-1118. https://doi.org/10.1016/j.ympev.2010.04.024
  • Lourenço, W. R. (2016). A preliminary synopsis on amber scorpions with special reference to Burmite species: an extraordinary development of our knowledge in only 20 years. Zookeys, (600), 75-87. https://doi.org/10.3897/zookeys.600.8913
  • Lourenço, W. R., & Gall, J. C. (2004). Fossil scorpions from the Buntsandstein (early Triassic) of France. Comptes Rendus Palevol, 3(5), 369-378.
  • Martill, D. M., Bechly, G., & Loveridge, R. F. (2007). The Crato fossil beds of Brazil: window into an ancient world. Cambridge University Press. https://doi.org/10.1017/CBO9780511535512
  • Menon, F. (2007). Higher systematics of scorpions from the Crato Formation, Lower Cretaceous of Brazil. Palaeontology, 50(1), 185-195. https://doi.org/10.1111/j.1475-4983.2006.00605.x
  • Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular biology and evolution, 30(5), 1188-1195. https://doi.org/10.1093/molbev/mst024
  • Nentwig, W., Blick, T., Bosmans, R., Gloor, D., Hänggi, A., & Kropf, C. (2021). araneae–Spiders of Europe. Version 02.2021. Internet: https://www.araneae.nmbe. https://doi.org/10.24436/1
  • Pepato, A. R., da Rocha, C. E., & Dunlop, J. A. (2010). Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evolutionary Biology, 10, 1-23. https://doi.org/10.1186/1471-2148-10-235
  • Perry, M. L. (1995). Preliminary Description of a New Fossil Scorpion from the Middle Eocene, Green River Formation, Rio Blanco County, Colorado.
  • Pocock, R. I. (1888). XXXII.—On the African specimens of the genus Scorpio (Linn.) contained in the collection of the British Museum. Journal of Natural History, 2(9), 245-255. https://doi.org/10.1080/00222938809460919
  • Pointon, M. A., Chew, D. M., Ovtcharova, M., Sevastopulo, G. D., & Crowley, Q. G. (2012). New high-precision U–Pb dates from western European Carboniferous tuffs; implications for time scale calibration, the periodicity of late Carboniferous cycles and stratigraphical correla-tion. Journal of the Geological Society, 169(6), 713-721.
  • Polis, G. A. (Ed.). (1990). The biology of scorpions (pp. xxiii+-587).
  • Poschmann, M., Dunlop, J. A., Kamenz, C., & Scholtz, G. (2008). The Lower Devonian scorpion Waeringoscorpio and the respiratory nature of its filamentous structures, with the description of a new species from the Westerwald area, Germany. Paläontologische Zeitschrift, 82, 418-436.
There are 29 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology (Other)
Journal Section Articles
Authors

Zeina N. Al-azawi 0000-0003-3603-9380

Publication Date December 31, 2024
Submission Date December 24, 2024
Acceptance Date December 29, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Al-azawi, Z. N. (2024). Comparative Study to the Sternal Region in Scorpions and Spiders. Natural and Engineering Sciences, 9(3), 52-68. https://doi.org/10.28978/nesciences.1606427

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015