Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 1, 41 - 55, 01.04.2025
https://doi.org/10.28978/nesciences.1611242

Abstract

Project Number

1

References

  • Abu Zeid, S. T., Alamoudi, R. A., & Mokeem Saleh, A. A. (2022). Impact of water solubility on chemical composition and surface structure of two generations of bioceramic root canal sealers. Applied Sciences, 12(2), 873. https://doi.org/10.3390/app12020873
  • Al-Anazi, M. H., Mathew, S. T., & Assery, M. K. (2020). Assessment of interfacial adaptation of new endodontic sealers to root canal dentin with and without a main Guttaperch cone: an SEM analysis. J Res Med Dent Sci, 8(3), 184-192.
  • Al-Askary, R., & Al-Jubori, S. (2023). Biocompatibility of Newly Prepared Nanocalcium Oxide Based Root Canal Sealer (In Vivo study). Al-Rafidain Dental Journal, 23(2), 274-283. https://doi.org/10.33899/rdenj.2022.132515.1149
  • Aminoshariae, A., & Kulild, J. C. (2020). The impact of sealer extrusion on endodontic outcome: a systematic review with meta‐analysis. Australian Endodontic Journal, 46(1), 123-129. https://doi.org/10.1111/aej.12370
  • Assiry, A. A., Karobari, M. I., Lin, G. S. S., Batul, R., Snigdha, N. T., Luke, A. M., ... & Noorani, T. Y. (2023). Microstructural and elemental characterization of root canal sealers using FTIR, SEM, and EDS analysis. Applied Sciences, 13(7), 4517. https://doi.org/10.3390/app13074517
  • Badawy, R. E. S., & Mohamed, D. A. (2022). Evaluation of new bioceramic endodontic sealers: An in vitro study. Dental and Medical Problems, 59(1), 85-92. https://doi.org/ 10.17219/dmp/133954
  • Belal, R. S. I., Edanami, N., Yoshiba, K., Yoshiba, N., Ohkura, N., Takenaka, S., & Noiri, Y. (2022). Comparison of calcium and hydroxyl ion release ability and in vivo apatite-forming ability of three bioceramic-containing root canal sealers. Clinical Oral Investigations, 26(2), 1443-1451. https://doi.org/10.1007/s00784-021-04118-w
  • Benezra, M. K., Wismayer, P. S., & Camilleri, J. (2018). Interfacial characteristics and cytocompatibility of hydraulic sealer cements. Journal of endodontics, 44(6), 1007-1017. https://doi.org/10.1016/j.joen.2017.11.011
  • Bolhari, B., Nekoofar, M. H., Sharifian, M., Ghabrai, S., Meraji, N., & Dummer, P. M. (2014). Acid and microhardness of mineral trioxide aggregate and mineral trioxide aggregate–like materials. Journal of endodontics, 40(3), 432-435. https://doi.org/10.1016/j.joen.2013.10.014
  • Cardinali, F., & Camilleri, J. (2023). A critical review of the material properties guiding the clinician’s choice of root canal sealers. Clinical oral investigations, 27(8), 4147-4155. https://doi.org/10.1007/s00784-023-05140-w
  • Chandravanshi, N., & Neetish, K. (2023). Diurnal Variations in Greenhouse Gas Emissions from a Macrophyte-Covered River. Aquatic Ecosystems and Environmental Frontiers, 1(1), 11-15.
  • Dawood, A., Manton, D., Parashos, P., Wong, R., O'Brien-Simpson, N., Holden, J., ... & Reynolds, E. (2024). Biocompatibility and hard tissue-forming ability of CPP-ACP-and CPP-ACFP-modified calcium silicate-based cements. Al-Rafidain Dental Journal, 24(2), 289-310. https://doi.org/10.33899/rdenj.2024.151060.1264
  • Deepthi, V., Mallikarjun, E., Nagesh, B., & Mandava, P. (2018). Effect of acidic pH on microhardness and microstructure of theraCal LC, endosequence, mineral trioxide aggregate, and biodentine when used as root repair material. Journal of Conservative Dentistry, 21(4), 408-412.
  • Demirci, G. K., Kaval, M. E., Kurt, S. M., Serefoglu, B., Güneri, P., Hülsmann, M., & Caliskan, M. K. (2021). Energy-dispersive X-ray spectrometry analysis and radiopacity of five different root canal sealers. Brazilian dental journal, 32, 1-11. https://doi.org/10.1590/0103-6440202104638
  • Doğan, M. (2022). Impact of Gibberellic Acid and Naphthalene Acetic Acid on Axillary Shoot Multiplication in Hygrophila polysperma (Roxb.) T. Anderson. Natural and Engineering Sciences, 7(3), 310-318. http://doi.org/10.28978/nesciences.1224554
  • Donnermeyer, D., Bürklein, S., Dammaschke, T., & Schäfer, E. (2019). Endodontic sealers based on calcium silicates: a systematic review. Odontology, 107(4), 421-436. https://doi.org/10.1007/s10266-018-0400-3
  • Duarte, M. A. H., Marciano, M. A., Vivan, R. R., Tanomaru Filho, M., Tanomaru, J. M. G., & Camilleri, J. (2018). Tricalcium silicate-based cements: properties and modifications. Brazilian oral research, 32, e70. https://doi.org/10.1590/1807-3107bor-2018.vol32.0070
  • Eid, A., Davide, M., Joudi, F., Rekab, M., Layous, K., Hamadah, O., ... & Kharouf, N. (2021). Comparative Evaluation of The Apical Sealing Ability of BioRoot and Ahplus Sealers: An In Vitro Study. Int. J. Dent. Oral Sci, 8, 2309-2313. http://dx.doi.org/10.19070/2377-8075-21000456
  • Elnaghy, A. M. (2014). Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: a comparative study. Journal of endodontics, 40(7), 953-957. https://doi.org/10.1016/j.joen.2013.11.007
  • Fakhrian, M., Jafariyan, M., Pirali Zefrehei, A. R., & Sahraei, H. (2022). Effect of dietary medicinal plants on some biochemical hematological parameters of sterlet (Acipenser ruthenus). International Journal of Aquatic Research and Environmental Studies, 2(1), 55–59. https://doi.org/10.70102/IJARES/V2I1/6
  • Fattah, R. A. A., Fansa, H. A., Wahab, S. A., & Zidan, A. Z. Quantitative and Qualitative Assessment of Sealing Ability of Different Root Canal Sealing Materials.
  • Gunasekaran, S., Periyagounder, S., & Subramaniam, M. (2023). Enhancing micromachining precision with novel electrolyte combinations: an investigation. Journal of Ceramic Processing Research, 24(4), 705-713.
  • Jain, S., & Adhikari, H. D. (2018). Scanning electron microscopic evaluation of marginal adaptation of AH-plus, GuttaFlow, and RealSeal at apical one-third of root canals–Part I: Dentin-sealer interface. Journal of Conservative Dentistry and Endodontics, 21(1), 85-89. https://doi.org/10.4103/JCD.JCD_126_17
  • Jo, S. B., Kim, H. K., Lee, H. N., Kim, Y. J., Dev Patel, K., Campbell Knowles, J., ... & Song, M. (2020). Physical properties and biofunctionalities of bioactive root canal sealers in vitro. Nanomaterials, 10(9), 1750. https://doi.org/10.3390/nano10091750
  • Kang, T. Y., Choi, J. W., Seo, K. J., Kim, K. M., & Kwon, J. S. (2021). Physical, chemical, mechanical, and biological properties of four different commercial root-end filling materials: a comparative study. Materials, 14(7), 1693. https://doi.org/10.3390/ma14071693
  • Khalil, I., Naaman, A., & Camilleri, J. (2016). Properties of tricalcium silicate sealers. Journal of endodontics, 42(10), 1529-1535. https://doi.org/10.1016/j.joen.2016.06.002
  • Khan, M. T., Moeen, F., Safi, S. Z., Said, F., Mansoor, A., & Khan, A. (2021). The structural, physical, and in vitro biological performance of freshly mixed and set endodontic sealers. European Endodontic Journal, 6(1), 98. https://doi.org/10.14744/eej.2020.36349
  • Lee, Y. N., Kim, M. K., Kim, H. J., Yu, M. K., Lee, K. W., & Min, K. S. (2024). Evaluation of the root dentin bond strength and intratubular biomineralization of a premixed calcium aluminate-based hydraulic bioceramic endodontic sealer. Journal of Oral Science, 66(2), 96-101. https://doi.org/10.2334/josnusd.23-0235
  • Lin, G. S. S., Sim, D. H. H., Luddin, N., Lai, J. C. H., Abd Ghani, H., & Noorani, T. Y. (2023). Fabrication and characterisation of novel algin incorporated bioactive-glass 58S calcium-silicate-based root canal sealer. Journal of dental sciences, 18(2), 604-612. https://doi.org/10.1016/j.jds.2022.08.012
  • López-García, S., Myong-Hyun, B., Lozano, A., García-Bernal, D., Forner, L., Llena, C., ... & Rodríguez-Lozano, F. J. (2020). Cytocompatibility, bioactivity potential, and ion release of three premixed calcium silicate-based sealers. Clinical oral investigations, 24, 1749-1759. https://doi.org/10.1007/s00784-019-03036-2
  • Mahmmod, A., & Al-Sabawi, N. (2022). Cone Beam Computed Tomography Evaluation of Two Rotary Systems with and without XP-Endo Finisher for Retreatability of Canals Obturated with Bioceramic Sealer. Al-Rafidain Dental Journal, 22(2), 220-232. http://dx.doi.org/10.33899/rdenj.2021.130773.1114
  • Mombeini, S. (2018). Acetylation of alcohols by acetic acid and alcohol oxidation with hydrogen peroxide adjacent to benzyl triphenylphosphonium. International Academic Journal of Science and Engineering, 5(2), 59–65. https://doi.org/10.9756/IAJSE/V5I1/1810026
  • Nazari, M., & Attaran Fariman, G. (2022). Unialgal culture of Pseudonitzschia (Bacillariophyceae) species a Domoic Acid (AD) toxin producer, local of Oman Sea. International Journal of Aquatic Research and Environmental Studies, 2(1), 1-8. https://doi.org/10.70102/IJARES/V2I1/1
  • Özel, B., & Erişen, R. (2022). Influence of Acidic Environmental Conditions on Push‐Out Bonding Strength of Four Calcium Silicate‐Based Materials to Root Dentin. International Journal of Dentistry, 2022(1), 9169221. https://doi.org/10.1155/2022/9169221
  • Patri, G., Agrawal, P., Anushree, N., Arora, S., Kunjappu, J. J., & Shamsuddin, S. V. (2020). A scanning electron microscope analysis of sealing potential and marginal adaptation of different root canal sealers to dentin: An in vitro study. J Contemp Dent Pract, 21(1), 73-7.
  • Paunikar, M., Bhargava, K., Newase, P., Bawalkar, A., Shirsath, S., Kumar, T., & Sarode, G. (2023). Effect of Acidic Ph on Push-Out Bond Strength of Various Root Repair Materials–An In vitro Study. Medical Journal of Dr. DY Patil University, 16(6), 924-927. https://doi.org/10.4103/mjdrdypu.mjdrdypu_325_22
  • Primus, C., Gutmann, J. L., Tay, F. R., & Fuks, A. B. (2022). Calcium silicate and calcium aluminate cements for dentistry reviewed. Journal of the American Ceramic Society, 105(3), 1841-1863. https://doi.org/10.1111/jace.18051
  • Rajasekharan, S., Vercruysse, C., Martens, L., & Verbeeck, R. (2018). Effect of exposed surface area, volume and environmental pH on the calcium ion release of three commercially available tricalcium silicate based dental cements. Materials, 11(1), 123. https://doi.org/10.3390/ma11010123
  • Reszka, P., Nowicka, A., Dura, W., Marek, E., & Lipski, M. (2019). SEM and EDS study of TotalFill BC Sealer and GuttaFlow Bioseal root canal sealers. Dental and Medical Problems, 56(2), 167-172. https://doi.org/10.17219/dmp/105561
  • Salman, N. A., Al-Noor, S. S., & Khalaf, K. A. (2023). Comparative Study of Hormonal Stimulation of HCG, PG-extract and Ovaprim on Thermal Accumulation Period and Egg Production in Grass Carp Ctenopharyngodon idella. International Journal of Aquatic Research and Environmental Studies, 3(2), 99-108. https://doi.org/10.70102/IJARES/V3I2/6
  • Shokouhinejad, N., Nekoofar, M. H., Iravani, A., Kharrazifard, M. J., & Dummer, P. M. (2010). Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. Journal of endodontics, 36(5), 871-874. https://doi.org/10.1016/j.joen.2009.12.025
  • Timis, L., Gorea, M., Har, N., Cimpean, S., Delean, A., Bud, M. G., & Campian, R. S. (2023). Biomineralization ability of an experimental bioceramic endodontic sealer based on nanoparticles of calcium silicates. Medicine and Pharmacy Reports, 96(4), 434.
  • Williams, D. F. (1976). Biomaterials and biocompatibility. Medical Progress through Technology, 4(1-2), 31–42. Yang, D. K., Kim, S., Park, J. W., Kim, E., & Shin, S. J. (2018). Different setting conditions affect surface characteristics and microhardness of calcium silicate‐based sealers. Scanning, 2018(1), 7136345. https://doi.org/10.1155/2018/7136345
  • Yang, Y., Liu, H., Wang, Z. J., Hu, P., Haapasalo, M., Manso, A., ... & Shen, Y. (2023). The effect of acidity on the physicochemical properties of two hydraulic calcium silicate-based cements and two calcium phosphate silicate-based cements. BMC Oral Health, 23(1), 554. https://doi.org/10.1186/s12903-023-03211-8
  • Zamparini, F., Prati, C., Taddei, P., Spinelli, A., Di Foggia, M., & Gandolfi, M. G. (2022). Chemical-physical properties and bioactivity of new premixed calcium silicate-bioceramic root canal sealers. International journal of molecular sciences, 23(22), 13914. https://doi.org/10.3390/ijms232213914

The Effect of Acidic Environment on Ion Release and Interfacial Adaptation of Two Bioceramic Sealers

Year 2025, Volume: 10 Issue: 1, 41 - 55, 01.04.2025
https://doi.org/10.28978/nesciences.1611242

Abstract

The aim of the study is to conduct an evaluation and comparison of the ion release and interfacial adaptation of two bioceramic sealers (BS) and those are Dia-Root and NeoSealer Flo sealers in normal conditions (PBS) and in infectious conditions with the help of scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDX). Methods: Slices of dentin which were 80 in number along with spaces of canals that are standardized were segregated into groups of two where the value of n for each was 40, and sealers like Neo Sealer as well as Dia-Root was used to fill them. There were specimens of 40 in each group and they were further divided into subgroups of two where the value of n is 20 with regard to the liquids used in experiment and their subjection to 1mmol per liter of butyric acid which has a pH value of 5.4 as well as subjection to PBS with a pH value of 7.4. Post which, an incubation of specimens for a period of seven days at a temperature of 37°C. With the aid of SEM, the evaluation of release of ions and the gap along the margins of the sealer as well as the interface of the dentin’s root was performed. Results: EDX of examined sealers subjugated to PBS showed mean Ca/P ratios that were greater than the natural HAP ratio (1.67). The NeoSEALER Flo sealer had a considerably reduced mean gap width than the DIA-ROOT sealer in an acidic environment where P ≤ 0.05. Whereas the standard deviation as well as mean for DIA-ROOT and NeoSEALER exposed to PBS were determined, DIA-ROOT BIO Sealer formed the smallest gap, and NeoSEALER Flo formed the largest gap. Conclusion: All examined sealers (Dia-Root and NeoSealer Flo) produce calcium, aluminum, and oxygen ions in all storage media. Acidic environments have an impact on the interfacial adaptation of the tested BS to perform root canaling on dentins.

Ethical Statement

English

Supporting Institution

Self-Funded

Project Number

1

References

  • Abu Zeid, S. T., Alamoudi, R. A., & Mokeem Saleh, A. A. (2022). Impact of water solubility on chemical composition and surface structure of two generations of bioceramic root canal sealers. Applied Sciences, 12(2), 873. https://doi.org/10.3390/app12020873
  • Al-Anazi, M. H., Mathew, S. T., & Assery, M. K. (2020). Assessment of interfacial adaptation of new endodontic sealers to root canal dentin with and without a main Guttaperch cone: an SEM analysis. J Res Med Dent Sci, 8(3), 184-192.
  • Al-Askary, R., & Al-Jubori, S. (2023). Biocompatibility of Newly Prepared Nanocalcium Oxide Based Root Canal Sealer (In Vivo study). Al-Rafidain Dental Journal, 23(2), 274-283. https://doi.org/10.33899/rdenj.2022.132515.1149
  • Aminoshariae, A., & Kulild, J. C. (2020). The impact of sealer extrusion on endodontic outcome: a systematic review with meta‐analysis. Australian Endodontic Journal, 46(1), 123-129. https://doi.org/10.1111/aej.12370
  • Assiry, A. A., Karobari, M. I., Lin, G. S. S., Batul, R., Snigdha, N. T., Luke, A. M., ... & Noorani, T. Y. (2023). Microstructural and elemental characterization of root canal sealers using FTIR, SEM, and EDS analysis. Applied Sciences, 13(7), 4517. https://doi.org/10.3390/app13074517
  • Badawy, R. E. S., & Mohamed, D. A. (2022). Evaluation of new bioceramic endodontic sealers: An in vitro study. Dental and Medical Problems, 59(1), 85-92. https://doi.org/ 10.17219/dmp/133954
  • Belal, R. S. I., Edanami, N., Yoshiba, K., Yoshiba, N., Ohkura, N., Takenaka, S., & Noiri, Y. (2022). Comparison of calcium and hydroxyl ion release ability and in vivo apatite-forming ability of three bioceramic-containing root canal sealers. Clinical Oral Investigations, 26(2), 1443-1451. https://doi.org/10.1007/s00784-021-04118-w
  • Benezra, M. K., Wismayer, P. S., & Camilleri, J. (2018). Interfacial characteristics and cytocompatibility of hydraulic sealer cements. Journal of endodontics, 44(6), 1007-1017. https://doi.org/10.1016/j.joen.2017.11.011
  • Bolhari, B., Nekoofar, M. H., Sharifian, M., Ghabrai, S., Meraji, N., & Dummer, P. M. (2014). Acid and microhardness of mineral trioxide aggregate and mineral trioxide aggregate–like materials. Journal of endodontics, 40(3), 432-435. https://doi.org/10.1016/j.joen.2013.10.014
  • Cardinali, F., & Camilleri, J. (2023). A critical review of the material properties guiding the clinician’s choice of root canal sealers. Clinical oral investigations, 27(8), 4147-4155. https://doi.org/10.1007/s00784-023-05140-w
  • Chandravanshi, N., & Neetish, K. (2023). Diurnal Variations in Greenhouse Gas Emissions from a Macrophyte-Covered River. Aquatic Ecosystems and Environmental Frontiers, 1(1), 11-15.
  • Dawood, A., Manton, D., Parashos, P., Wong, R., O'Brien-Simpson, N., Holden, J., ... & Reynolds, E. (2024). Biocompatibility and hard tissue-forming ability of CPP-ACP-and CPP-ACFP-modified calcium silicate-based cements. Al-Rafidain Dental Journal, 24(2), 289-310. https://doi.org/10.33899/rdenj.2024.151060.1264
  • Deepthi, V., Mallikarjun, E., Nagesh, B., & Mandava, P. (2018). Effect of acidic pH on microhardness and microstructure of theraCal LC, endosequence, mineral trioxide aggregate, and biodentine when used as root repair material. Journal of Conservative Dentistry, 21(4), 408-412.
  • Demirci, G. K., Kaval, M. E., Kurt, S. M., Serefoglu, B., Güneri, P., Hülsmann, M., & Caliskan, M. K. (2021). Energy-dispersive X-ray spectrometry analysis and radiopacity of five different root canal sealers. Brazilian dental journal, 32, 1-11. https://doi.org/10.1590/0103-6440202104638
  • Doğan, M. (2022). Impact of Gibberellic Acid and Naphthalene Acetic Acid on Axillary Shoot Multiplication in Hygrophila polysperma (Roxb.) T. Anderson. Natural and Engineering Sciences, 7(3), 310-318. http://doi.org/10.28978/nesciences.1224554
  • Donnermeyer, D., Bürklein, S., Dammaschke, T., & Schäfer, E. (2019). Endodontic sealers based on calcium silicates: a systematic review. Odontology, 107(4), 421-436. https://doi.org/10.1007/s10266-018-0400-3
  • Duarte, M. A. H., Marciano, M. A., Vivan, R. R., Tanomaru Filho, M., Tanomaru, J. M. G., & Camilleri, J. (2018). Tricalcium silicate-based cements: properties and modifications. Brazilian oral research, 32, e70. https://doi.org/10.1590/1807-3107bor-2018.vol32.0070
  • Eid, A., Davide, M., Joudi, F., Rekab, M., Layous, K., Hamadah, O., ... & Kharouf, N. (2021). Comparative Evaluation of The Apical Sealing Ability of BioRoot and Ahplus Sealers: An In Vitro Study. Int. J. Dent. Oral Sci, 8, 2309-2313. http://dx.doi.org/10.19070/2377-8075-21000456
  • Elnaghy, A. M. (2014). Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: a comparative study. Journal of endodontics, 40(7), 953-957. https://doi.org/10.1016/j.joen.2013.11.007
  • Fakhrian, M., Jafariyan, M., Pirali Zefrehei, A. R., & Sahraei, H. (2022). Effect of dietary medicinal plants on some biochemical hematological parameters of sterlet (Acipenser ruthenus). International Journal of Aquatic Research and Environmental Studies, 2(1), 55–59. https://doi.org/10.70102/IJARES/V2I1/6
  • Fattah, R. A. A., Fansa, H. A., Wahab, S. A., & Zidan, A. Z. Quantitative and Qualitative Assessment of Sealing Ability of Different Root Canal Sealing Materials.
  • Gunasekaran, S., Periyagounder, S., & Subramaniam, M. (2023). Enhancing micromachining precision with novel electrolyte combinations: an investigation. Journal of Ceramic Processing Research, 24(4), 705-713.
  • Jain, S., & Adhikari, H. D. (2018). Scanning electron microscopic evaluation of marginal adaptation of AH-plus, GuttaFlow, and RealSeal at apical one-third of root canals–Part I: Dentin-sealer interface. Journal of Conservative Dentistry and Endodontics, 21(1), 85-89. https://doi.org/10.4103/JCD.JCD_126_17
  • Jo, S. B., Kim, H. K., Lee, H. N., Kim, Y. J., Dev Patel, K., Campbell Knowles, J., ... & Song, M. (2020). Physical properties and biofunctionalities of bioactive root canal sealers in vitro. Nanomaterials, 10(9), 1750. https://doi.org/10.3390/nano10091750
  • Kang, T. Y., Choi, J. W., Seo, K. J., Kim, K. M., & Kwon, J. S. (2021). Physical, chemical, mechanical, and biological properties of four different commercial root-end filling materials: a comparative study. Materials, 14(7), 1693. https://doi.org/10.3390/ma14071693
  • Khalil, I., Naaman, A., & Camilleri, J. (2016). Properties of tricalcium silicate sealers. Journal of endodontics, 42(10), 1529-1535. https://doi.org/10.1016/j.joen.2016.06.002
  • Khan, M. T., Moeen, F., Safi, S. Z., Said, F., Mansoor, A., & Khan, A. (2021). The structural, physical, and in vitro biological performance of freshly mixed and set endodontic sealers. European Endodontic Journal, 6(1), 98. https://doi.org/10.14744/eej.2020.36349
  • Lee, Y. N., Kim, M. K., Kim, H. J., Yu, M. K., Lee, K. W., & Min, K. S. (2024). Evaluation of the root dentin bond strength and intratubular biomineralization of a premixed calcium aluminate-based hydraulic bioceramic endodontic sealer. Journal of Oral Science, 66(2), 96-101. https://doi.org/10.2334/josnusd.23-0235
  • Lin, G. S. S., Sim, D. H. H., Luddin, N., Lai, J. C. H., Abd Ghani, H., & Noorani, T. Y. (2023). Fabrication and characterisation of novel algin incorporated bioactive-glass 58S calcium-silicate-based root canal sealer. Journal of dental sciences, 18(2), 604-612. https://doi.org/10.1016/j.jds.2022.08.012
  • López-García, S., Myong-Hyun, B., Lozano, A., García-Bernal, D., Forner, L., Llena, C., ... & Rodríguez-Lozano, F. J. (2020). Cytocompatibility, bioactivity potential, and ion release of three premixed calcium silicate-based sealers. Clinical oral investigations, 24, 1749-1759. https://doi.org/10.1007/s00784-019-03036-2
  • Mahmmod, A., & Al-Sabawi, N. (2022). Cone Beam Computed Tomography Evaluation of Two Rotary Systems with and without XP-Endo Finisher for Retreatability of Canals Obturated with Bioceramic Sealer. Al-Rafidain Dental Journal, 22(2), 220-232. http://dx.doi.org/10.33899/rdenj.2021.130773.1114
  • Mombeini, S. (2018). Acetylation of alcohols by acetic acid and alcohol oxidation with hydrogen peroxide adjacent to benzyl triphenylphosphonium. International Academic Journal of Science and Engineering, 5(2), 59–65. https://doi.org/10.9756/IAJSE/V5I1/1810026
  • Nazari, M., & Attaran Fariman, G. (2022). Unialgal culture of Pseudonitzschia (Bacillariophyceae) species a Domoic Acid (AD) toxin producer, local of Oman Sea. International Journal of Aquatic Research and Environmental Studies, 2(1), 1-8. https://doi.org/10.70102/IJARES/V2I1/1
  • Özel, B., & Erişen, R. (2022). Influence of Acidic Environmental Conditions on Push‐Out Bonding Strength of Four Calcium Silicate‐Based Materials to Root Dentin. International Journal of Dentistry, 2022(1), 9169221. https://doi.org/10.1155/2022/9169221
  • Patri, G., Agrawal, P., Anushree, N., Arora, S., Kunjappu, J. J., & Shamsuddin, S. V. (2020). A scanning electron microscope analysis of sealing potential and marginal adaptation of different root canal sealers to dentin: An in vitro study. J Contemp Dent Pract, 21(1), 73-7.
  • Paunikar, M., Bhargava, K., Newase, P., Bawalkar, A., Shirsath, S., Kumar, T., & Sarode, G. (2023). Effect of Acidic Ph on Push-Out Bond Strength of Various Root Repair Materials–An In vitro Study. Medical Journal of Dr. DY Patil University, 16(6), 924-927. https://doi.org/10.4103/mjdrdypu.mjdrdypu_325_22
  • Primus, C., Gutmann, J. L., Tay, F. R., & Fuks, A. B. (2022). Calcium silicate and calcium aluminate cements for dentistry reviewed. Journal of the American Ceramic Society, 105(3), 1841-1863. https://doi.org/10.1111/jace.18051
  • Rajasekharan, S., Vercruysse, C., Martens, L., & Verbeeck, R. (2018). Effect of exposed surface area, volume and environmental pH on the calcium ion release of three commercially available tricalcium silicate based dental cements. Materials, 11(1), 123. https://doi.org/10.3390/ma11010123
  • Reszka, P., Nowicka, A., Dura, W., Marek, E., & Lipski, M. (2019). SEM and EDS study of TotalFill BC Sealer and GuttaFlow Bioseal root canal sealers. Dental and Medical Problems, 56(2), 167-172. https://doi.org/10.17219/dmp/105561
  • Salman, N. A., Al-Noor, S. S., & Khalaf, K. A. (2023). Comparative Study of Hormonal Stimulation of HCG, PG-extract and Ovaprim on Thermal Accumulation Period and Egg Production in Grass Carp Ctenopharyngodon idella. International Journal of Aquatic Research and Environmental Studies, 3(2), 99-108. https://doi.org/10.70102/IJARES/V3I2/6
  • Shokouhinejad, N., Nekoofar, M. H., Iravani, A., Kharrazifard, M. J., & Dummer, P. M. (2010). Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. Journal of endodontics, 36(5), 871-874. https://doi.org/10.1016/j.joen.2009.12.025
  • Timis, L., Gorea, M., Har, N., Cimpean, S., Delean, A., Bud, M. G., & Campian, R. S. (2023). Biomineralization ability of an experimental bioceramic endodontic sealer based on nanoparticles of calcium silicates. Medicine and Pharmacy Reports, 96(4), 434.
  • Williams, D. F. (1976). Biomaterials and biocompatibility. Medical Progress through Technology, 4(1-2), 31–42. Yang, D. K., Kim, S., Park, J. W., Kim, E., & Shin, S. J. (2018). Different setting conditions affect surface characteristics and microhardness of calcium silicate‐based sealers. Scanning, 2018(1), 7136345. https://doi.org/10.1155/2018/7136345
  • Yang, Y., Liu, H., Wang, Z. J., Hu, P., Haapasalo, M., Manso, A., ... & Shen, Y. (2023). The effect of acidity on the physicochemical properties of two hydraulic calcium silicate-based cements and two calcium phosphate silicate-based cements. BMC Oral Health, 23(1), 554. https://doi.org/10.1186/s12903-023-03211-8
  • Zamparini, F., Prati, C., Taddei, P., Spinelli, A., Di Foggia, M., & Gandolfi, M. G. (2022). Chemical-physical properties and bioactivity of new premixed calcium silicate-bioceramic root canal sealers. International journal of molecular sciences, 23(22), 13914. https://doi.org/10.3390/ijms232213914
There are 45 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Amina A. Younis 0009-0000-1859-7616

Ashraf S. Alchalabi This is me 0000-0001-6020-1734

Project Number 1
Publication Date April 1, 2025
Submission Date January 1, 2025
Acceptance Date April 1, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA A. Younis, A., & S. Alchalabi, A. (2025). The Effect of Acidic Environment on Ion Release and Interfacial Adaptation of Two Bioceramic Sealers. Natural and Engineering Sciences, 10(1), 41-55. https://doi.org/10.28978/nesciences.1611242

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015