Research Article
BibTex RIS Cite

A Population Dynamics Model for Insecticide Resistance Evolution in Aphids Using the SEIR Framework

Year 2025, Volume: 10 Issue: 2, 425 - 433, 01.09.2025
https://doi.org/10.28978/nesciences.1763838

Abstract

The emergence and rapid spread of insecticide resistance in aphid populations is a significant concern for sustainable agriculture pest management worldwide. In this study, we develop a detailed population dynamics model based on an SEIR (Susceptible-Exposed-Infectious-Resistant) compartmental framework to capture the intricate biological and ecological processes that fuel resistance development. Incorporating robust field data on aphid populations' demographics and resistance phenotypes, we create and execute an algorithmic simulation designed to track and quantify the temporal dynamics of resistance growth for various insecticide exposure scenarios estimation procedures, such as sensitivity and uncertainty analyses, assessed model accuracy and reliability. The simulation results expose the impact of mutation rates, gene flow, intensity of selective pressures, and population heterogeneity on resistance evolution Moreover, the model illustrates the pivotal insecticide application thresholds that may alternatively prolong or hasten resistance accumulation. This helps broaden understanding of aphids' resistance mechanisms while offering a flexible computational framework for adaptive, optimized pest management. The methodological approach and algorithmic framework proposed here are relevant for studying resistance evolution in other arthropod pests and vectors.

References

  • Bosco, N. J., Ildephonse, M., & Alexandre, N. (2018). Agriculture and Food Security in Gicumbi District, Northern Province of Rwanda. International Academic Journal of Social Sciences, 5(1), 154-168.
  • Chhabda, P. K., Maurya, S., & Kumar, V. (2025). Macrophytes' function in bio-geochemical cycling and aquatic ecosystem maintenance of homeostasis. International Journal of Aquatic Research and Environmental Studies, 5(1), 207–214. https://doi.org/10.70102/IJARES/V5I1/5-1-21
  • Comins, H. N. (1977). The development of insecticide resistance in the presence of migration. Journal of theoretical biology, 64(1), 177-197. https://doi.org/10.1016/0022-5193(77)90119-9
  • Day, T., & Gandon, S. (2007). Applying population‐genetic models in theoretical evolutionary epidemiology. Ecology Letters, 10(10), 876-888. https://doi.org/10.1111/j.1461-0248.2007.01091.x
  • Far, L. M. (2017). Regression Techniques Using Data Mining in Flowering Plant. International Academic Journal of Science and Engineering, 4(2), 190-197.
  • Georghiou, G. P. (1990). Overview of insecticide resistance. ACS Symposium Series, 421, 18–41.
  • Gorman, K., et al. (2012). A simulation model for insecticide resistance management. Journal of Economic Entomology, 105(3), 753–763.
  • Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM review, 42(4), 599-653. https://doi.org/10.1137/S0036144500371907
  • Jeger, M. J., & Pautasso, M. (2008). Plant disease and global change: the importance of long-term data sets. New Phytologist, 8-11. https://www.jstor.org/stable/4627236
  • Krishnan, M., & Iyer, S. R. (2024). Protein Concentration from Plant-Based Sources Using Cross-Flow Filtration. Engineering Perspectives in Filtration and Separation, 17-20.
  • Roush, R. T., & McKenzie, J. A. (1987). Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology, 32(1), 361–380. https://doi.org/10.1146/annurev.en.32.010187.002045
  • Tabashnik, B. E. (1994). Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 39(1), 47–79. https://doi.org/10.1146/annurev.en.39.010194.000403
  • Tarek, H., & Abood, Z. A. U. (2014). The impact of human resource development in the strategic objectives of improving the production processes (A study compared to some of the Iraqi dairy plants). International Academic Journal of Organizational Behavior and Human Resource Management, 1(2), 65–87.
  • Taylor, M., & Feyereisen, R. (1996). Molecular biology and evolution of resistance of toxicants. Molecular biology and evolution, 13(6), 719-734. https://doi.org/10.1093/oxfordjournals.molbev.a025633
  • Umamaheswari, T. S. (2025). Mathematical and Visual Comprehension of Convolutional Neural Network Model for Identifying Crop Diseases. International Academic Journal of Innovative Research, 12(1), 1-7.
  • Van den Bosch, F., & Gilligan, C. A. (2003). Measures of durability of resistance. Phytopathology, 93(5), 616-625. https://doi.org/10.1094/PHYTO.2003.93.5.616
There are 16 citations in total.

Details

Primary Language English
Subjects Marine and Estuarine Ecology
Journal Section Articles
Authors

Montader M. Hasan 0009-0005-3182-4226

Tammineni Sreelatha This is me 0000-0002-0951-2796

S. Muraleedaran This is me 0009-0009-6868-246X

Sadridin Eshkaraev This is me 0000-0003-1711-3303

Maqsad Matyakubov This is me 0009-0002-5892-6458

Tripti Dewangan This is me 0009-0009-0193-5661

Publication Date September 1, 2025
Submission Date August 13, 2025
Acceptance Date August 16, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA M. Hasan, M., Sreelatha, T., Muraleedaran, S., … Eshkaraev, S. (2025). A Population Dynamics Model for Insecticide Resistance Evolution in Aphids Using the SEIR Framework. Natural and Engineering Sciences, 10(2), 425-433. https://doi.org/10.28978/nesciences.1763838

                                                                                               We welcome all your submissions

                                                                                                             Warm regards,
                                                                                                      


All published work is licensed under a Creative Commons Attribution 4.0 International License Link . Creative Commons License
                                                                                         NESciences.com © 2015