Research Article
BibTex RIS Cite

SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES

Year 2017, , 240 - 246, 30.06.2017
https://doi.org/10.17261/Pressacademia.2017.595

Abstract

Metal oxide nanoparticles are
potential candidate for making future antimicrobials. Increased interest is due
to change in fundamental properties at nanoscale. Ni-doped zinc oxide nano-particles
were prepared for pharmacological studies. Co-precipitation and solvo-thermal
methods were employed which yielded Ni-doped zinc oxide nano-particles and
un-doped zinc oxide nano-particles were synthesized via solvo-thermal method.
All prepared nano-particles were characterized using X-ray diffraction studies
whereas doping was confirmed by Energy Dispersive X-ray analysis. Shape and
morphology of these nano-particles was assessed using Scanning Electron
Microscopy. The synthesized nano-particles have shown antibacterial activity
against both Gram-negative and Gram-positive bacteria designating these
nano-particles as future broad spectrum antibacterial. The optical properties
were also studied by measuring the energy band gap and were found 1.50 eV for un-doped zinc oxide
nano-particles, and it decreases to 1.47 eV
for Ni-doped zinc oxide. Ni-doped zinc oxide nanoparticles were proved to be
active future pharmaceutical and biomedical agents. 

References

  • Al-Harbi, T. (2011). Hydrothermal synthesis and optical properties of Ni doped ZnO hexagonal nanodiscs. J. Alloy. Compd. 509(2), 387-390.
  • Ananda, S. (2014). Synthesis and Characterization of Se-doped ZnO Nanoparticles by Electrochemical Method: Photodegradation Kinetics of Indigo Carmine Dye and Study of Antimicrobial, Antimitotic Activities of Se-doped ZnO Nanoparticles. J. Am. Chem. Sci. 4(5), 616-637.
  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71.
  • Cai, A. J., Wang, Y. L., Xing, S. T., Du, L. Q., & Ma, Z. C. (2013). Tuned morphologies of DNA-assisted ZnO struggling against pH. Ceram. Int. 39(1), 605-609.
  • Hewakuruppu, Y. L., Dombrovsky, L. A., Chen, C., Timchenko, V., Jiang, X., Baek, S., & Taylor, R. A. (2013). Plasmonic “pump–probe” method to study semi-transparent nanofluids. Appl. Opt., 52(24), 6041-6050.
  • Hua, G., Zhang, Y., Ye, C., Wang, M., & Zhang, L. (2007). Controllable growth of ZnO nanoarrays in aqueous solution and their optical properties.Nanotechnology, 18(14), 145605.
  • Hsu, H. C., Cheng, H. M., Wu, C. Y., Huang, H. S., Lee, Y. C., & Hsieh, W. F. (2006). Luminescence of selective area growth of epitaxial ZnO nanowires and random-growth-oriented nanobelts. Nanotechnology, 17(5), 1404.
  • Khatoon, S., & Ahmad, T. (2012). Synthesis, optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Mat. Sci. Engine. B, 2(6), 325-333.
  • Leven, M., Berghe, D. A. V., Mertens, F., Vlietinck, A., & Lammens, E. (1979). Screening of higher plants for biological activities I. Antimicrobial activity. Planta Medica, 36(08), 311-321.
  • Liewhiran, C., Seraphin, S., & Phanichphant, S. (2006). Synthesis of nano-sized ZnO powders by thermal decomposition of zinc acetate using Broussonetia papyrifera (L.) Vent pulp as a dispersant. Curr. Appl. Phy. 6(3), 499-502.
  • Moriga, T., Y. Hayashi, Y,. Kondo, K., Nishimura, Y. (2004). Zinc oxide, tin oxide-based transparent conductive thin film of amorphous, J. Vac. Sci. and Technol A, 22, 705–1710.
  • Raja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta Part A. 120, 19-24.
  • Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). Clinical nanomedicine.The present and future of nanotechnology in human health care. Nanomed. Nanotechnol. Biol. Med. 3(1), 20-31.
  • Siegel, R. W. (1994). What do we really know about the atomic-scale structures of nanophase materials?. J. Phy. Chem. Solids, 55(10), 1097-1106.
  • Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. J. Physics: Condensed Matter, 16(25), R829.
  • Xu, M., Fujita, D., Kajiwara, S., Minowa, T., Li, X., Takemura, T., ... & Hanagata, N. (2010). Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Biomaterials, 31(31), 8022-8031.
  • Yan, H., Johnson, J., Law, M., He, R., Knutsen, K., McKinney, J. R., ... & Yang, P. (2003). ZnO nanoribbon microcavity lasers. Adv. Mat. 15(22), 1907-1911.
  • Zhang, J., Wang, S., Xu, M., Wang, Y., Zhu, B., Zhang, S., ... & Wu, S. (2009). Hierarchically porous ZnO architectures for gas sensor application. Crys. Gro. Degn., 9(8), 3532-3537. Zhong, Q., & Matijević, E. (1996). Preparation of uniform zinc oxide colloids by controlled double-jet precipitation. J. Mat. Chem. 6(3), 443447.
Year 2017, , 240 - 246, 30.06.2017
https://doi.org/10.17261/Pressacademia.2017.595

Abstract

References

  • Al-Harbi, T. (2011). Hydrothermal synthesis and optical properties of Ni doped ZnO hexagonal nanodiscs. J. Alloy. Compd. 509(2), 387-390.
  • Ananda, S. (2014). Synthesis and Characterization of Se-doped ZnO Nanoparticles by Electrochemical Method: Photodegradation Kinetics of Indigo Carmine Dye and Study of Antimicrobial, Antimitotic Activities of Se-doped ZnO Nanoparticles. J. Am. Chem. Sci. 4(5), 616-637.
  • Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71.
  • Cai, A. J., Wang, Y. L., Xing, S. T., Du, L. Q., & Ma, Z. C. (2013). Tuned morphologies of DNA-assisted ZnO struggling against pH. Ceram. Int. 39(1), 605-609.
  • Hewakuruppu, Y. L., Dombrovsky, L. A., Chen, C., Timchenko, V., Jiang, X., Baek, S., & Taylor, R. A. (2013). Plasmonic “pump–probe” method to study semi-transparent nanofluids. Appl. Opt., 52(24), 6041-6050.
  • Hua, G., Zhang, Y., Ye, C., Wang, M., & Zhang, L. (2007). Controllable growth of ZnO nanoarrays in aqueous solution and their optical properties.Nanotechnology, 18(14), 145605.
  • Hsu, H. C., Cheng, H. M., Wu, C. Y., Huang, H. S., Lee, Y. C., & Hsieh, W. F. (2006). Luminescence of selective area growth of epitaxial ZnO nanowires and random-growth-oriented nanobelts. Nanotechnology, 17(5), 1404.
  • Khatoon, S., & Ahmad, T. (2012). Synthesis, optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Mat. Sci. Engine. B, 2(6), 325-333.
  • Leven, M., Berghe, D. A. V., Mertens, F., Vlietinck, A., & Lammens, E. (1979). Screening of higher plants for biological activities I. Antimicrobial activity. Planta Medica, 36(08), 311-321.
  • Liewhiran, C., Seraphin, S., & Phanichphant, S. (2006). Synthesis of nano-sized ZnO powders by thermal decomposition of zinc acetate using Broussonetia papyrifera (L.) Vent pulp as a dispersant. Curr. Appl. Phy. 6(3), 499-502.
  • Moriga, T., Y. Hayashi, Y,. Kondo, K., Nishimura, Y. (2004). Zinc oxide, tin oxide-based transparent conductive thin film of amorphous, J. Vac. Sci. and Technol A, 22, 705–1710.
  • Raja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta Part A. 120, 19-24.
  • Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). Clinical nanomedicine.The present and future of nanotechnology in human health care. Nanomed. Nanotechnol. Biol. Med. 3(1), 20-31.
  • Siegel, R. W. (1994). What do we really know about the atomic-scale structures of nanophase materials?. J. Phy. Chem. Solids, 55(10), 1097-1106.
  • Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. J. Physics: Condensed Matter, 16(25), R829.
  • Xu, M., Fujita, D., Kajiwara, S., Minowa, T., Li, X., Takemura, T., ... & Hanagata, N. (2010). Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Biomaterials, 31(31), 8022-8031.
  • Yan, H., Johnson, J., Law, M., He, R., Knutsen, K., McKinney, J. R., ... & Yang, P. (2003). ZnO nanoribbon microcavity lasers. Adv. Mat. 15(22), 1907-1911.
  • Zhang, J., Wang, S., Xu, M., Wang, Y., Zhu, B., Zhang, S., ... & Wu, S. (2009). Hierarchically porous ZnO architectures for gas sensor application. Crys. Gro. Degn., 9(8), 3532-3537. Zhong, Q., & Matijević, E. (1996). Preparation of uniform zinc oxide colloids by controlled double-jet precipitation. J. Mat. Chem. 6(3), 443447.
There are 18 citations in total.

Details

Journal Section Articles
Authors

Samima Shahid This is me

Muhammad Mudassar Sher This is me

Publication Date June 30, 2017
Published in Issue Year 2017

Cite

APA Shahid, S., & Sher, M. M. (2017). SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES. PressAcademia Procedia, 5(1), 240-246. https://doi.org/10.17261/Pressacademia.2017.595
AMA Shahid S, Sher MM. SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES. PAP. June 2017;5(1):240-246. doi:10.17261/Pressacademia.2017.595
Chicago Shahid, Samima, and Muhammad Mudassar Sher. “SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES”. PressAcademia Procedia 5, no. 1 (June 2017): 240-46. https://doi.org/10.17261/Pressacademia.2017.595.
EndNote Shahid S, Sher MM (June 1, 2017) SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES. PressAcademia Procedia 5 1 240–246.
IEEE S. Shahid and M. M. Sher, “SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES”, PAP, vol. 5, no. 1, pp. 240–246, 2017, doi: 10.17261/Pressacademia.2017.595.
ISNAD Shahid, Samima - Sher, Muhammad Mudassar. “SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES”. PressAcademia Procedia 5/1 (June 2017), 240-246. https://doi.org/10.17261/Pressacademia.2017.595.
JAMA Shahid S, Sher MM. SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES. PAP. 2017;5:240–246.
MLA Shahid, Samima and Muhammad Mudassar Sher. “SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES”. PressAcademia Procedia, vol. 5, no. 1, 2017, pp. 240-6, doi:10.17261/Pressacademia.2017.595.
Vancouver Shahid S, Sher MM. SOLVOTHERMAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF NI-DOPED ZINC OXIDE NANOPARTICLES. PAP. 2017;5(1):240-6.

PressAcademia Procedia (PAP) publishes proceedings of conferences, seminars and symposiums. PressAcademia Procedia aims to provide a source for academic researchers, practitioners and policy makers in the area of social and behavioral sciences, and engineering.

PressAcademia Procedia invites academic conferences for publishing their proceedings with a review of editorial board. Since PressAcademia Procedia is an double blind peer-reviewed open-access book, the manuscripts presented in the conferences can easily be reached by numerous researchers. Hence, PressAcademia Procedia increases the value of your conference for your participants. 

PressAcademia Procedia provides an ISBN for each Conference Proceeding Book and a DOI number for each manuscript published in this book.

PressAcademia Procedia is currently indexed by DRJI, J-Gate, International Scientific Indexing, ISRA, Root Indexing, SOBIAD, Scope, EuroPub, Journal Factor Indexing and InfoBase Indexing. 

Please contact to procedia@pressacademia.org for your conference proceedings.