Research Article
BibTex RIS Cite
Year 2019, Volume: 1 Issue: 2, 51 - 55, 29.12.2019

Abstract

References

  • [1] M. A. Abdlhusein and M. N. Al-harere, Pitchfork Domination in Graphs, (2019) reprint.
  • [2] M. A. Abdlhusein and M. N. Al-harere, Inverse Pitchfork Domination in Graphs, (2019) reprint.
  • [3] M. N. Al-harere and A. T. Breesam, Further Results on Bi-domination in Graphs, AIP Conference Proceedings 2096 (2019) 020013-020013-9p.
  • [4] M. N. Al-harere and P. A. Khuda Bakhash, Tadpole Domination in Graphs, Baghdad Science Journal 15 (2018) 466-471.
  • [5] M. Chellali, T. W. Haynes, S. T. Hedetniemi, and A. M. Rae, [1,2]-Set in graphs, Discrete Applied Mathematic, 161 (2013) 2885- 2893.
  • [6] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1969).
  • [7] T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Domination in Graphs -Advanced Topics, Marcel Dekker Inc., (1998).
  • [8] S.T. Hedetneimi and R. Laskar, Topics in domination in graphs, Discrete Math. 86 (1990).
  • [9] A. A. Omran and Y. Rajihy, Some Properties of Frame Domination in Graphs, Journal of Engineering and Applied Sciences, 12 (2017) 8882-8885.
  • [10] Ore O. Theory of Graphs, American Mathematical Society, Provedence, R.I. (1962).

Pitchfork Domination and It's Inverse for Corona and Join Operations in Graphs

Year 2019, Volume: 1 Issue: 2, 51 - 55, 29.12.2019

Abstract

Let $G$ be a finite simple and undirected graph without isolated vertices. A subset $D$ of $V$ is a pitchfork dominating set if every vertex $v \in D$  dominates at least $j$ and at most $k$ vertices of $V-D$, where $j$ and $k$  are non-negative integers .The domination number of $G$, denoted by $\gamma_{pf}(G)$ is a minimum cardinality over all pitchfork dominating sets in $G$. A subset $D^{-1}$ of $V-D$ is an  inverse pitchfork dominating set if $D^{-1}$ is a pitchfork dominating set.  The inverse domination number of $G$, denoted by $\gamma_{pf}^{-1}(G)$ is a minimum cardinality over all inverse pitchfork  dominating sets in $G$. In this paper, the pitchfork domination and the inverse pitchfork domination are determined when $j=1$ and $k=2$ for some graphs that obtained from graph operations  corona and join.

References

  • [1] M. A. Abdlhusein and M. N. Al-harere, Pitchfork Domination in Graphs, (2019) reprint.
  • [2] M. A. Abdlhusein and M. N. Al-harere, Inverse Pitchfork Domination in Graphs, (2019) reprint.
  • [3] M. N. Al-harere and A. T. Breesam, Further Results on Bi-domination in Graphs, AIP Conference Proceedings 2096 (2019) 020013-020013-9p.
  • [4] M. N. Al-harere and P. A. Khuda Bakhash, Tadpole Domination in Graphs, Baghdad Science Journal 15 (2018) 466-471.
  • [5] M. Chellali, T. W. Haynes, S. T. Hedetniemi, and A. M. Rae, [1,2]-Set in graphs, Discrete Applied Mathematic, 161 (2013) 2885- 2893.
  • [6] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1969).
  • [7] T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Domination in Graphs -Advanced Topics, Marcel Dekker Inc., (1998).
  • [8] S.T. Hedetneimi and R. Laskar, Topics in domination in graphs, Discrete Math. 86 (1990).
  • [9] A. A. Omran and Y. Rajihy, Some Properties of Frame Domination in Graphs, Journal of Engineering and Applied Sciences, 12 (2017) 8882-8885.
  • [10] Ore O. Theory of Graphs, American Mathematical Society, Provedence, R.I. (1962).
There are 10 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Mohammed A. Abdlhusein

Manal N. Al-harere

Publication Date December 29, 2019
Acceptance Date December 3, 2019
Published in Issue Year 2019 Volume: 1 Issue: 2

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.