Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 1, 16 - 27, 30.06.2025
https://doi.org/10.47086/pims.1653932

Abstract

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Inc., Hoboken, NJ, 2019.
  • S. Vajda, Fibonacci and Lucas Numbers the Golden Section, Ellis Horrowood Limited Publ., England, 1989.
  • G. E. Bergum, A. N. Philippou, and A. F. Horadam, Applications of Fibonacci numbers, Kluwer Academic, Washington, 1998.
  • A. P. Stakhov, I. S. Tkachenko, Hyperbolic Fibonacci trigonometry, Rep. Ukr. Acad. Sci. 208 (1993) 9–14.
  • A. P. Stakhov, Hyperbolic Fibonacci and Lucas functions: a new mathematics for the living nature, ITI, Vinnitsa, 2003.
  • A. P. Stakhov, B. Rozin, On a new class of hyperbolic functions, Chaos Solitons Fractals, 23 (2005) 379–389.
  • A. P. Stakhov and B. Rozin, The Golden Shofar, Chaos Solitons Fractals 26(3) (2005) 677–684.
  • A. P. Stakhov, B. Rozin, The “golden” hyperbolic models of Universe, Chaos Solitons Fractals 34(2) (2007) 159–171.
  • S. Falc´on and ´A. Plaza, The k-Fibonacci hyperbolic functions, Chaos Solitons Fractals, 38(2) (2008) 409–420.
  • A. Da¸sdemir, T. D. S¸ent¨urk, Z. ¨Unal, On recursive hyperbolic functions in Fibonacci-Lucas sense, Hacettepe Journal of Mathematics and Statistics 49(6) (2020) 2046–2062.
  • A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke. Math. J. 32(3) (1965) 437–446.

On Stakhov Functions and New Hyperboloid Surfaces

Year 2025, Volume: 7 Issue: 1, 16 - 27, 30.06.2025
https://doi.org/10.47086/pims.1653932

Abstract

This paper presents an investigation into the generalization of hyperbolic Fibonacci sine and cosine functions, as well as Fibonacci spirals. Initially, we establish the main definitions and theoretically model them, listing several special cases. We then uncover fundamental results, including the De Moivre and Pythagorean formulas. Based on these new definitions, we introduce new classes of three-dimensional hyperboloid surfaces and compute their Gauss and mean curvatures. Notably, we demonstrate that these surfaces are geodesic.

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Inc., Hoboken, NJ, 2019.
  • S. Vajda, Fibonacci and Lucas Numbers the Golden Section, Ellis Horrowood Limited Publ., England, 1989.
  • G. E. Bergum, A. N. Philippou, and A. F. Horadam, Applications of Fibonacci numbers, Kluwer Academic, Washington, 1998.
  • A. P. Stakhov, I. S. Tkachenko, Hyperbolic Fibonacci trigonometry, Rep. Ukr. Acad. Sci. 208 (1993) 9–14.
  • A. P. Stakhov, Hyperbolic Fibonacci and Lucas functions: a new mathematics for the living nature, ITI, Vinnitsa, 2003.
  • A. P. Stakhov, B. Rozin, On a new class of hyperbolic functions, Chaos Solitons Fractals, 23 (2005) 379–389.
  • A. P. Stakhov and B. Rozin, The Golden Shofar, Chaos Solitons Fractals 26(3) (2005) 677–684.
  • A. P. Stakhov, B. Rozin, The “golden” hyperbolic models of Universe, Chaos Solitons Fractals 34(2) (2007) 159–171.
  • S. Falc´on and ´A. Plaza, The k-Fibonacci hyperbolic functions, Chaos Solitons Fractals, 38(2) (2008) 409–420.
  • A. Da¸sdemir, T. D. S¸ent¨urk, Z. ¨Unal, On recursive hyperbolic functions in Fibonacci-Lucas sense, Hacettepe Journal of Mathematics and Statistics 49(6) (2020) 2046–2062.
  • A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke. Math. J. 32(3) (1965) 437–446.
There are 11 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Ahmet Daşdemir 0000-0001-8352-2020

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date March 8, 2025
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

Creative Commons License
The published articles in PIMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.