Review Article
BibTex RIS Cite

Usage of sonochemistry in medicine, industry, environment, and synthesis

Year 2025, Volume: 3 Issue: 1, 36 - 49, 30.04.2025
https://doi.org/10.62425/rtpharma.1637304

Abstract

Much progress has been made regarding ultrasound in chemical science and the chemical industry in recent years. Ultrasonic waves can defined as “inaudible sound with high frequency for humans” the frequency of which approximately exceeds 20 kHz. This paper focuses on using ultrasonic technologies in some areas such as polymer degradation, polymerization reactions, removal of toxic organic contaminants in water, organic synthesis, ultra-strong transfer processes including the extraction process, adsorption process, membrane process, demulsification, crystallization process, emulsification, heterogeneous chemical reaction process, and the electrochemical process

Supporting Institution

Mersin University

Thanks

I would like to thank Mersin University

References

  • Abdelmonsef, A. H., El-Saghier, A. M., & Kad, A. M. (2023). Ultrasound-assisted green synthesis of triazole-based azomethine/thiazolidin-4-one hybrid inhibitors for cancer therapy through targeting dysregulation signatures of some Rab proteins. Green Chemistry Letters and Reviews, 16, 2150394. https://doi.org/10.1080/17518253.2022.2150394
  • Adewuyi, Y. G. (2005). Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environmental Science & Technology, 39(22), 8557-8570. https://doi.org/10.1021/es0509127
  • Alves Filho, E. G., Sousa Valéria, M., Rodrigues, S., de Brito, E. S., & Fernandes, F. A. N. (2020). Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrasonics Sonochemistry, 63, 104911. https://doi.org/10.1016/j.ultsonch.2019.104911
  • Anna, G. S. S., Machado, P., Sauzem, P. D., Rosa, F. A., Rubin, M. A., Ferreira, J., Bonacorso, H. G., Zanatta, N., & Martins, M. A. P. (2009). Ultrasound promoted synthesis of 2-imidazolines in water: A greener approach toward monoamine oxidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 19(2), 546-549. https://doi.org/10.1016/j.bmcl.2008.03.001
  • Asberg, A. (1967). Ultrasonic cinematography of the living heart. Ultrasonics, 5(2), 113-117. https://doi.org/10.1016/S0041-624X(67)80012-X
  • Asfaram, A., Ghaedi, M., Abidi, H., Javadian, H., Zoladl, M., & Sadeghfar, F. (2018). Synthesis of Fe3O4@CuS@Ni2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. Ultrasonics Sonochemistry, 44, 240-250. https://doi.org/10.1016/j.ultsonch.2018.02.011
  • Avalos, M., Babiano, R., Cabello, N., Cintas, P., Hursthouse, M. B., Jiménez, J. L., Light, M. E., & Palacios, J. C. (2003). Thermal and sonochemical studies on the Diels-Alder cycloadditions of masked o-benzoquinones with furans: new insights into the reaction mechanism. The Journal of Organic Chemistry, 68, 7193-7203. https://doi.org/10.1021/jo0348322
  • Barmin, R. A., Moosavifar, M., Dasgupta, A., Herrmann, A., Kiessling, F., Pallares, R. M., & Lammers, T. (2023). Polymeric materials for ultrasound imaging and therapy†. Chemical Science, 43, 11941-11954. https://doi.org/10.1039/D3SC04339H.
  • Bayrami, A., Alioghli, S., Rahim Pouran, S., Habibi-Yangjeh, A., Khataee, A., & Ramesh, S. (2019). A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial, and oxidative activity evaluation. Ultrasonics Sonochemistry, 55, 57-66. https://doi.org/10.1016/j.ultsonch.2019.03.010
  • Bendicho, C., De La Calle, I., Pena, F., Costas, M., Cabaleiro, N., & Lavilla, I. (2012). Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. Trac-Trends in Analytical Chemistry, 31, 50-60. https://doi.org/10.1016/j.trac.2011.06.018
  • Bhuyan, P. Bhuyan, A. J., & Saikia, L. (2020). Chapter 7 - Sonochemical protocol for coupling reactions, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 177-201. https://doi.org/10.1016/B978-0-12-819540-6.00007-3
  • Blanco, M. M., Reamírez, M. A., Caterina, M. C., Perillo, I. A., Oppezzo, G. A., Shmidt, M. S. Gutkind, G. O., Di Conza, J., & Salerno, A. (2020). Ultrasound promoted synthesis and antimicrobial evaluation of novel seven and eight-membered 1,3-disubstituted cyclic amidinium salts. The Open Medicinal Chemistry Journal, 10, 139-152. http://www.scirp.org/journal/Paperabs.aspx?PaperID=106129
  • Bremner, D. H., Burgess, A. E., & Chand, R. (2011). The chemistry of ultrasonic degradation of organic compounds. Current Organic Chemistry, 15(2), 168-177. https://doi.org/10.2174/138527211793979862
  • Busnel, R. G., Picard, D., & Bouzigues, H. (1953). Rapports entre la longueur d'onde et l'oxydation de l'iodure de potassium par les ultrasons. Journal de Chimie Physique, 50, 97-101. https://doi.org/10.1051/jcp/1953500097
  • Cabello, N., Cintas, P., & Luche, J. L. (2003). Sonochemical effects in the addition of furan to masked ortho-benzoquinones. Ultrasonics Sonochemistry, 10, 25-31. https://doi.org/10.1016/S1350-4177(02)00103-7
  • Casey, P., Alasmar, M., McLaughlin, J., Ang, Y., McPhee, J., Heire, P., & Sultan J. (2022). The current use of ultrasound to measure skeletal muscle and its ability to predict clinical outcomes: A systematic review. The Journal of Cachexia, Sarcopenia and Muscle, 13(5), 2298-2309. https://doi.org/10.1002/jcsm.13041
  • Chate, A. V., Joshi, R. S., Mandhane, P. G., & Gill, C. H. (2011). An Improved Procedure for the Synthesis of 1,5-Benzothiazepines Using Ceric Ammonium Nitrate (CAN). Korea Oopen Access Journals, 55(5), 776-780. https://www.kci.go.kr/kciportal/landing/article.kci?arti_id=ART001596633.
  • Chatel, G. (2019). Sonochemistry in nanocatalysis: the use of ultrasound from the catalyst synthesis to the catalytic reaction. In Current Opinion in Green and Sustainable Chemistry, 15, 1-6. https://doi.org/10.1016/j.cogsc.2018.07.004
  • Chen, F., Zhang, M., & Hui Yang, C. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: a review. Ultrasonics Sonochemistry, 63, 104953-104964. https://doi.org/10.1016/j.ultsonch.2019.104953
  • Chen, R., Li, Y., Dong, H., Liu, Z., Li, S,. Yang S., & Li, X. (2012). Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrasonics Sonochemistry, 19(6), 1160-1168. https://doi.org/10.1016/j.ultsonch.2012.03.008
  • Chunxia, C., Minghui, L., Zhihui, L., Junting, W., Zhengchao, T., Tianyu, Z., & Ming, Y. (2013). Synthesis and evaluation of 2-amino-4h-pyran-3-carbonitrile derivatives as antitubercular agents. Open Journal of Medicinal Chemistry, 3, 128-135. http://dx.doi.org/10.4236/ojmc.2013.34015.
  • Cravotto, G., Borretto, E., Oliverio, M., Procopio, A., & Penoni, A. (2015). Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects. Catalysis Communications, 63, 2-9. https://doi.org/10.1016/j.catcom.2014.12.014
  • Crawford, D. E. (2017). Solvent-free sonochemistry: Sonochemical organic synthesis in the absence of a liquid medium. The Beilstein Journal of Organic Chemistry, 13, 1850-1856. https://doi.org/10.3762/bjoc.13.179
  • Crum, L. A., Mason, T. J., Reisse, J., & Suslick, K. S., eds. (1999) Sonochemistry and Sonoluminescence. Kluwer Publishers: Dordrecht, Netherlands, NATO ASI Series C, 524. https://www.researchgate.net/publication/259147036_Sonochemistry_and_Sonoluminescence_NATO_ASI_Series.
  • Cruz-Benítez, M. M., Gónzalez-Morones, P., Hernández-Hernández, E., Villagómez-Ibarra, J. R., Castro-Rosas, J., Rangel-Vargas, E., Fonseca-Florido, H. A., & Gómez-Aldapa, C. A. (2021). Covalent functionalization of graphene oxide with fructose, starch, and micro-cellulose by sonochemistry. Polymers (Basel), 13, 1-14. https://doi.org/10.3390/polym13040490
  • Cum, G., Galli, G., Gallo, R., & Spadaro, A. (1992). Role of frequency in the ultrasonic activation of chemical reactions. Ultrasonics, 30(4), 267-270. https://doi.org/10.1016/0041-624X(92)90086-2 d'Acoustique, C. (1955). Étude d'un palpeur d'énergie ultrasonore. Annales Des Télécommunications, 10, 2-7. https://doi.org/10.1007/BF03016368
  • Davidson, R. S., Safdar, A., Spencer, J. D., & Robinson, B. (1987). Applications of ultrasound to organic chemistry. Ultrasonics., 25(1), 35. https://doi.org/10.1016/0041-624X(87)90009-6
  • del Fresno, J. M., Loira, I., Morata, A., González, C., Suárez-Lepe, J. A., & Cuerda, R. (2018). Application of ultrasound to improve lees ageing processes in red wines. Food Chemistry, 261, 157-163. https://doi.org/10.1016/j.foodchem.2018.04.041
  • Dey, S., & Rathod, V. K. (2013). Ultrasound assisted extraction of β-carotene from Spirulina platensis. Sonochemistry, 20(1), 271-276. https://doi.org/10.1016/j.ultsonch.2012.05.010
  • Dheyab, M. A., Aziz, A. A., & Jameel, M. S. (2021). Recent advances in inorganic nanomaterials synthesis using sonochemistry: a comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. Molecules, 26, 2453-2472. https://doi.org/10.3390/molecules26092453
  • Draye, M., Chatel, G., & Duwald, R. (2020). Ultrasound for Drug Synthesis: A Green Approach. Pharmaceuticals, 13, 23. https://doi.org/10.3390/ph13020023
  • Ebringerová, A., & Hromádková, Z. (2010). An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides Central European Journal of Chemistry, 8, 243-257. https://doi.org/10.2478/s11532-010-0006-2
  • Eftekhari-Sis, B., & Vahdati-Khajeh, S. (2013). Ultrasound-assisted green synthesis of pyrroles and pyridazines in water via three-component condensation reactions of arylglyoxals. Current Chemistry Letters, 2, 85-92. https://doi.org/10.5267/j.ccl.2013.02.002
  • Entezari, M. H., & Kruus, P. (1994). Effect of frequency on sonochemical reactions. I: Oxidation of iodide. Ultrasonics Sonochemistry, 1(2), S75-S79. https://doi.org/10.1016/1350-4177(94)90001-9
  • Ersan, A. C., Kipcak, A. S., Ozen, M. Y., & Tugrul N.( 2020). An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry. Main Group Metal Chemistry, 43, 7-14. https://doi.org/10.1515/mgmc-2020-0002
  • Fillion, H., & Luche, J. L. (1998). Cycloadditions. In Synthetic Organic Sonochemistry; Luche, J.-L., Ed.; Plenum Press: New York, 91-106. https://www.scirp.org/reference/referencespapers?referenceid=619449.
  • Gharat, N. N., & Rathod, V. K. (2020). Ultrasound-assisted organic synthesis. Green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis 1-41. https://doi.org/10.1016/B978-0-12-819540-6.00001-2.
  • Gogate, P. R., Mujumdar, S., & Pandit, A. B. (2003). Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction. Advances in Environmental Research, 7(2), 283-299. https://doi.org/10.1016/S1093-0191(01)00133-2
  • González-García, J., Sáez, V., Tudela, I., Díez-Garcia, M. I., Esclapez, M. D., & Louisnard, O. (2010). Sonochemical treatment of water polluted by chlorinated organocompounds. Water, 2, 28-74. https://doi.org/10.3390/w2010028
  • Gökçay Bilici, E., Tıraş, C., & Şimşek Kuş, N. (2024). The synthesis of indane derivatives and antioxidant effects. Monatshefte für Chemie/Chemical Monthly, 155, 1243-1248. https://doi.org/10.1007/s00706-024-03267-4
  • Guo, K., Mutter, R., Heal, W., Reddy, T. P. K., Cope, H., Pratt, S., Thompson, M. J., & Chen, B. (2008). Synthesis and evaluation of a focused library of pyridine dicarbonitriles against prion disease. The European Journal of Medicinal Chemistry, 43, 93-106. https://doi.org/10.1016/j.ejmech.2007.02.018
  • Guzen, K. P., Cella, R., & Stefani, H. A. (2006). Ultrasound enhanced synthesis of 1,5-benzodiazepinic heterocyclic rings. Tetrahedron Letters, 47(46)-13, 8133-8136. https://doi.org/10.1016/j.tetlet.2006.09.043
  • Hatami, M., Mahmoudian, M., Khalili, S., & Asl, M. M. (2020). Chapter 12 - Sonochemical protocol of polymer synthesis, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 325-353. https://doi.org/10.1016/B978-0-12-819540-6.00012-7
  • Henglein, A. 1987. Sonochemistry: historical developments and modern aspects. Ultrasonics, 25(1), 6-16. https://doi.org/10.1016/0041-624X(87)90003-5
  • Hickenboth, C. R., Moore, J. S., White, S. R., Sottos, N. R., Baudry, J., & Wilson, S. R. (2007). Biasing reaction pathways with mechanical force. Nature, 446, 423-427. https://doi.org/10.1038/nature05681
  • Hujjatul Islam, M., Paul, M. T. Y., Burheim, O. S., & Pollet, B. G. (2019). Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrasonics Sonochemistry, 59, 104711-104719. https://doi.org/10.1016/j.ultsonch.2019.104711
  • Ingole, N. W., & Khedkar, S. V. (2012). The ultrasound reactor technology-A technology for the future. International Journal of Advance Engineering and Research Development, 2(1), 72-75. https://www.researchgate.net/publication/234125818_The_ultrasound_reactor_technology-_A_technology_for_future
  • Jiao, H., Mao, Q., Razzaq, N., Ankri, R., & Cui, J. (2024). Ultrasound technology assisted colloidal nanocrystal synthesis and biomedical applications. Ultrasonics Sonochemistry, 103, 106798. https://doi.org/10.1016/j.ultsonch.2024.106798
  • Jin, H., Zhao, H., Zhao, F., Li, Sh., Liu, W., Zhou, G., Tao, K., & Hou, T. (2009). Efficient epoxidation of chalcones with urea-hydrogen peroxide under ultrasound irradiation. Ultrasonics Sonochemistry, 16, 304-307. https://doi.org/10.1016/j.ultsonch.2008.10.013
  • Juliano, P., Bainczyk, F., Swiergon, P., Supriyatna, M. I. M., Guillaume, C., Ravetti, L., Canamasas, P., Cravotto, G., & Xu X. Q. (2017). Extraction of olive oil assisted by high-frequency ultrasound standing waves. Ultrasonics Sonochemistry, 38, 104-114. https://doi.org/10.1016/j.ultsonch.2017.02.038
  • Kamble, O., Chatterjee, R., Dandela, R., & Shinde, S. (2022). Ultrasonic energy for construction of bioactive heterocycles. Tetrahedron, 120, 132893. https://doi.org/10.1016/j.tet.2022.132893
  • Kaur, N. (2019). Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation. Mini-Reviews in Organic Chemistry, 16(5), 481-503. doi. https://doi.org/10.2174/1570193X15666180709144028
  • Kerboua, K., Hamdaoui, O., & Al-Zahrani, S. (2021). Sonochemical production of hydrogen: a numerical model applied to the recovery of aqueous methanol waste under oxygen-argon atmosphere. Environmental Progress & Sustainable Energy, 40, 1-15. https://doi.org/10.1002/ep.13511
  • King, D. L. Steeg, C. N. & Ellis, K. (1973). Visualization of ventricular septal defects by cardiac ultrasonography. Circulation., 48, 1215-1220. https://doi.org/10.1161/01.CIR.48.6.1215
  • Kulkarni, V. M., & Rathod, V. K. (2014). Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrasonics Sonochemistry, 21(2), 606-611. https://doi.org/10.1016/j.ultsonch.2013.08.021
  • Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N., & Rai, D. K. (2018). Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food and Bioprocess Technology, 11(2), 223-241. https://doi.org/10.1007/s11947-017-1961-9
  • Leopold, G. R., & Sokoloff, J. (1973). Ultrasonic scanning in the diagnosis of biliary disease. Surgical Clinics of North America, 53(5), 1043-1052. https://doi.org/10.1016/s0039-6109(16)40133-7
  • Lévêquea, J. M., & Cravotto, G. (2006). Microwaves, power ultrasound, and ionic liquids. a new synergy in green. Microwave Chemistry, Chimia, 60(6), 313-320. https://doi.org/10.2533/000942906777836255
  • Ley, S. V., & Low, C. M. R. (1989). Ultrasound in synthesis. Springer-Verlag, London. https://link.springer.com/book/10.1007/978-3-642-74672-7
  • Li, J., Li, L., Li, T., Li, H., & Liu J. (1996). An efficient and convenient procedure for the synthesis of 5,5-disubstituted hydantoins under ultrasound. Ultrasonics Sonochemistry, 3, 141-143. https://doi.org/10.1016/1350-1477(96)00011-2
  • Li, J. T., Yang, W. Z., Chen, G. F., & Li, T. S. (2003). A facile synthesisbis(substituted benzylidene) cycloalkanones catalyzed by KF/Al2O3 under ultrasound irradiation. Synthetic Communications, 33(15), 2619-2625. https://doi.org/10.1081/SCC-120021982
  • Li, J. T., Zhang, X. H., & Lin, Z. P. (2007). An improved synthesis of 1,3,5-triaryl-2pyrazolines in acetic acid aqueous solution under ultrasound irradiation. The Beilstein Journal of Organic Chemistry, 3, 13-17. https://doi.org/10.1186/1860-5397-3-13
  • Lindley, J., & Mason, T. (1988). ChemInform Abstract: Sonochemistry. Part 2. Synthetic Applications. ChemInform, 198(20) https://doi.org/10.1002/chin.198820354
  • Li, Z., Dong, J., Zhang, H., Zhang, Y., Wang, H., Cui, X., & Wang, Z. (2021). Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics Nanoscale Advances, 3(1), 41-72. https://doi.org/10.1039/d0na00753f.
  • Low, C. (1995). Ultrasound in synthesis: natural products and supersonic reactions? Ultrasonics Sonochemistry, 2, S153-https://doi.org/10.1016/1350-4177(95)00017-Z
  • Lubinski, M. A., Emelianov, S. Y., & O'Donnell, M. (1999). Adaptive strain estimation using retrospective processing [medical US elasticity imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46(1), 97-107. https://doi.org/10.1109/58.741428
  • Machado, I. V., dos Santos, J. R., Januario, M. A. P., & Corrêa, A. G. (2021). Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrasonics Sonochemistry, 78, 105704. https://doi.org/10.1016/j.ultsonch.2021.105704
  • Mady, M. F., El-Kateb, A. A., Zeid, I. F., & Jørgensen, K. B. (2013). Comparative studies on conventional and ultrasound-assisted synthesis of novel homoallylic alcohol derivatives linked to sulfonyl dibenzene moiety in aqueous media. Journal of Chemistry, Article ID 364036. https://doi.org/10.1155/2013/364036
  • Mallakpour, S., & Azadi, E. (2020). Chapter 11 - Sonochemical protocol for the organo-synthesis of tio2 and its hybrids: Properties and applications, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 287-323. http://dx.doi.org/10.1016/B978-0-12-819540-6.00011-5
  • Martínez, J. M., Delso, C., Aguilar, D. E., Álvarez, I., & Raso, J. (2020). Organic-solvent-free extraction of carotenoids from yeast Rhodotorula glutinis by application of ultrasound under pressure. Ultrasonics Sonochemistry, 61, 104833-104842. https://doi.org/10.1016/j.ultsonch.2019.104833
  • Martínez, R. F., Cravotto, G., & Cintas, P. (2021). Organic Sonochemistry: A Chemist’s Timely Perspective on Mechanisms and Reactivity. The Journal of Organic Chemistry, 86, 13833-13856. https://doi.org/10.1021/acs.joc.1c00805
  • Mason, T. J. (1990). In: chemistry with ultrasound. T.J. Mason (Ed.). Ch. 1:1-26, Elsevier Applied Science, London. Mason, T. J. (1990). Sonochemistry: The uses of ultrasound in chemistry. The The Royal Society of Chemistry Cambridge.
  • Mason, T. J. (1997). Ultrasound in synthetic organic chemistry. Chemical Society Reviews, 26, 443-451. https://doi.org/10.1039/CS9972600443.5
  • Mason, T. J., & Bernal, V. S. (2003). Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrasonics Sonochemistry, 10(4-5), 175-179. https://doi.org/10.1016/S1350-4177(03)00086-5
  • Mason, T.J., & Lorimer, J. P. (1988). Sonochemistry (Theory, Applications and Uses of Ultrasound in Chemistry). Ellis Horwood Limited, New York. Mason, T. J., Lorimer, J. P., & Bates, D. M. (1992). Quantifying sonochemistry: Casting some light on a ‘black art’. Ultrasonics, 30(1), 40-42. https://doi.org/10.1016/0041-624X(92)90030-P
  • Mason, T. J., Lorimer, J. P., & Walton, D. J. (1990). Sonochemistry. Ultrasonics, 28(5), 333-337. https://doi.org/10.1016/0041-624X(90)90041-L
  • Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253-S260. https://doi.org/10.1016/S1350-4177(96)00034-X
  • Monsef, R., Ghiyasiyan-Arani, M., Amiri, O., & Salavati-Niasari, M. (2019). Sonochemical synthesis, characterization and application of PrVO4 nanostructures as an effective photocatalyst for discoloration of organic dye contaminants in wastewater. Ultrasonics Sonochemistry, 61, 104822-104836. https://doi.org/10.1016/j.ultsonch.2019.104822
  • Naddeo, V., Belgiorno, V., Kassinos, D., Mantzavinos, & D., Meric, S. (2010). Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters. Ultrasonics Sonochemistry, 17(1), 179-185. https://doi.org/10.1016/j.ultsonch.2009.04.003
  • Navjeet, K. (2019). Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation. Mini-Reviews in Organic Chemistry, 16(5), 481-503. http://dx.doi.org/10.2174/1570193X15666180709144028
  • Nejumal, K. K., Manoj, P. R., Aravind, K., & Aravindakumar, C. T. (2014). Sonochemical degradation of a pharmaceutical waste, atenolol, in aqueous medium. Environmental Science and Pollution Research, 21(6), 4297-4308. https://doi.org/10.1007/s11356-013-2301-x
  • Oge, A., Maviş, M. E., Yolçan, C., & Aydoğan, F. (2012). Solvent-free Michael addition of 2-cyclohexenone under ultrasonic irradiation in the presence of long chain dicationic ammonium salts. Turkish Journal of Chemistry, 36, 137-146. https://doi.org/10.3906/kim-1104-63.
  • Ojha, K. S., Aznar, R., O’Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC - Trends in Analytical Chemistry, 122, 115663-115673. https://doi.org/10.1016/j.trac.2019.115663
  • Olson, T., & Barbier, P. (1994). Oxidation kinetics of natural organic matter by sonolysis and ozone. Water Research, 28, 1383-1391. https://doi.org/10.1016/0043-1354(94)90305-0
  • Ophir, J., Cespedes, I., Garra, B., Ponnekanti, H., Huang, Y., & Maklad, N. (1996). Elastography: Ultrasonic imaging of tissue strain and elastic modulus in vivo. European Journal of Ultrasound, 3(1), 49-70. https://doi.org/10.1016/0929-8266(95)00134-4
  • Paniwnyk, L., Beaufoy, E., Lorimer, J. P., & Mason, T. J. (2001). The extraction of rutin from flower buds of Sophora japonica. Ultrasonics Sonochemistry, 8(3), 299-301. https://doi.org/10.1016/S1350-4177(00)00075-4
  • Paniwnyk, L., Cai, H., Albu, S., Mason, T. J., & Cole, R. (2009). The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound. Ultrasonics Sonochemistry, 16(2), 287-292. https://doi.org/10.1016/j.ultsonch.2008.06.007
  • Peters, D. (1996). Ultrasound in materials chemistry. Journal of Materials Chemistry, 6, 1605-1618. https://doi.org/10.1039/JM9960601605
  • Petrier, C., & Francony A. (1997). Incidence of wave-frequency on the reaction rates during ultrasonic wastewater treatment. Water Science and Technology, 35(4), 175-180. https://doi.org/10.1016/S0273-1223(97)00023-1
  • Rastogi, N. K. (2011). Opportunities and challenges in application of ultrasound in food processing. Critical Reviews in Food Science and Nutrition, 51(8), 705-722. https://doi.org/10.1080/10408391003770583.
  • Regen, S. L., & Singh, A. (1982). Biphasic sonochemistry. convenient generation of dichlorocarbene1. Journal of Organic Chemistry, 47, 1587-1588. https://doi.org/10.1021/jo00347a047.
  • Renaud, P. (1953). Lois de l'oxydation de l'iodure de potassium par les ultrasons. Journal de Chimie Physique, 50, 136. https://doi.org/10.1051/jcp/1953500136.
  • Richards, W., & Loomis, A. J. 1927. The chemical effects of high frequency sound waves i. a preliminary survey. Journal of the American Chemical Society, 49, 3086. https://doi.org/10.1021/ja01411a015.
  • Riesz, P., & Kondo, T. (1992). Free radical formation induced by ultrasound and its biological implications. Free Radical Biology and Medicine, 13(3), 247-270. https://doi.org/10.1016/0891-5849(92)90021-8.
  • Riesz, P., Kondo, T., & Krishna, C. M. (1990). Sonochemistry of volatile and non-volatile solutes in aqueous solutions: e.p.r. and spin trapping studies. Ultrasonics, 28(5), 295-303. https://doi.org/10.1016/0041-624X(90)90035-M.
  • Robin, J., Tanter, M., & Pernot, M. (2017). A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications. Physics in Medicine & Biology, 62, 7471-7481. https://doi.org/10.1088/1361-6560/aa8211
  • Safari, J., Banitaba, S. H., & Khalili S. D. (2012). Ultraosund-promoted an ecient method for one-pot synthesis of 2-amino-4,6-diphenylnicotinonitriles in water: A rapid procedure without catalyst. Ultrasonics Sonochemistry, 19, 1061-1069. https://doi.org/10.1016/j.ultsonch.2012.01.005.
  • Sathishkumar, P., Mangalaraja, R. V., & Anandan S. (2016). Review on the recent improvements in sonochemical and combined sonochemical oxidation processes-A powerful tool for destruction of environmental contaminants. Renewable and Sustainable Energy Reviews, 55(4), 426-454. https://doi.org/10.1016/j.rser.2015.10.139.
  • Savun-Hekimoğlu, B. (2020). A review on sonochemistry and its environmental applications. Acoustics, 2, 766-775. https://doi.org/10.3390/acoustics2040042.
  • Savun-Hekimoğlu, B., & Ince, N. H. (2017). Decomposition of PPCPs by ultrasound-assisted advanced Fenton reaction: a case study with salicylic acid. Ultrasonics Sonochemistry, 39, 243-249. https://doi.org/10.1016/j.ultsonch.2017.04.013.
  • Seidi, S., & Yamini, Y. (2012). Analytical sonochemistry; developments, applications, and hyphenations of ultrasound in sample preparation and analytical techniques. Central European Journal of Chemistry, 10, 938-976. https://doi.org/10.2478/s11532-011-0160-1.
  • Serna-Galvis, E. A., Silva-Agredo, J., Botero-Coy, A. M., Moncayo-Lasso, A., Hernández, F., & Torres-Palma, R. A. (2019). Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Science of the Total Environment, 670, 623-632. https://doi.org/10.1016/j.scitotenv.2019.03.153.
  • Sezen, H., Şimşek Kuş, N., Özdemir, S., & Tollu, G. (2023). The addition of ketene to olefins under ultrasonic conditions: evaluation of the biological activities of halobicyclic lactone. ChemistrySelect, 8(13), e202204042. https://doi.org/10.1002/slct.202204042.
  • Shabir, G., Shafique, I., & Saeed, A. (2022). Ultrasound assisted synthesis of 5-7 membered heterocyclic rings in organic molecules. Journal of Heterocyclic Chemistry, 59(10), 669-1702. https://doi.org/10.1002/jhet.4527.
  • Sharda, S., Prasad, D. N., Kumar, S., & Singh, R. K. (2018). Hexachlorocyclotriphosphazene Catalyzed One-Pot Multicomponent Synthesis of 2,3-Dihydro-1H-1,5-benzodiazepines. Asian Journal of Organic & Medicinal Chemistry, 3(4), 176-180. http://dx.doi.org/10.14233/ajomc.2018.AJOMC-P151.
  • Sharma, R., & Kumar, A. (2020). Sonochemical protocol for catalyst-free organic synthesis. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 43-70. https://doi.org/10.1016/B978-0-12-819540-6.00002-4.
  • Shelke, K. F. Sapkal, S. B., & Shingare, M. S. (2009). Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media. Chinese Chemical Letters, 20, 283. https://doi.org/10.1016/j.cclet.2008.11.033.
  • Shoh, A. (1988). Industrial Applications of Ultrasound, in Ultrasound: Its Chemical, Physical, and Biological Effects. VCH Publishers Inc, New York. 97-122. https://doi.org/10.1121/1.1975495.
  • Silva, B. N. M., Pinto, A. C., Silva, F. C., Ferreira, V. F., & Silva, B. V. (2016). Ultrasound-Assisted Synthesis of Isatin-Type 5’-(4-Alkyl/Aryl-1H-1,2,3-triazoles) via 1,3-Dipolar Cycloaddition Reactions. Journal of the Brazilian Chemical Society, 27(12), 2378-2382. https://doi.org/10.5935/0103-5053.20160121.
  • Strandness, JrMD, D. E., Schultz MD, MD R. D., Sumner MD, D. S., & Rushmer, R. F. 1967. Ultrasonic cinematography of the living heart. The American Journal of Surgery, 113(3), 311-320. https://doi.org/10.1016/0002-9610(67)90272-3.
  • Suslick, K. S. (1988).Ultrasound: Its chemical, physical and biological effects. VCH Publishers, New York, 336. Suslick, K. S., Hyeon, T., Fang, M., Ries, J. T., & Cichowlas, A. A. (1996). Sonochemical synthesis of nanophase metals, alloys and carbides. Materials Science Forum, 225-227, 903-912. https://doi.org/10.4028/www.scientific.net/msf.225-227.903.
  • Tran, P. H., & Nguyen, H. T. (2020). Chapter 4 - Sonochemical protocol for alkylation reactions, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 95-111. https://doi.org/10.1016/B978-0-12-819540-6.00004-8.
  • Wang, A., Kang, D., Zhang, W., Zhang, C., Zou, Y., & Zhou, G. (2018). Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry, 245, 724-730. https://doi.org/10.1016/j.foodchem.2017.12.003.
  • Wang, S., & Zhu, Z. (2005). Sonochemical treatment of fly ash for dye removal from wastewater. Journal of Hazardous Materials, 126(1-3), 91-95. https://doi.org/10.1016/j.jhazmat.2005.06.009.
  • Weissler, A., Pecht, I., & Anbar, M. (1965). Ultrasound Chemical Effects on Pure Organic Liquids. Science, 150(3701), 1288.
  • Wieland, K,. Tauber, S., Gasser, C., Rettenbacher, L. A., Lux, L., Radel, S., & Lendl, B. (2019). In-Line ultrasound-enhanced raman spectroscopy allows for highly sensitive analysis with improved selectivity in suspensions. Analytical Chemistry, 91(22), 14231-4238. https://doi.org/10.1021/acs.analchem.9b01105.
  • Wood, R. W., & Loomis, A. L. (1927). The physical and biological effects of high-frequency sound-waves of great intensity. Philosophical Magazine, 4(22), 417-436. https://doi.org/10.1080/14786440908564348.
  • Yadav, V. K., Ali, D., Khan, S. H., Gnanamoorthy, G., Choudhary, N., Yadav, K. K., Thai, V. N., Hussain, S. A., & Manhrdas, S. (2020). Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials, 10, 1-17. https://doi.org/10.3390/nano10081551.
  • Yousef Tizhoosh, N., Khataee, A., Hassandoost, R., Darvishi Cheshmeh Soltani, R., & Doustkhah, E. (2020). Ultrasound-engineered synthesis of WS2@CeO2 heterostructure for sonocatalytic degradation of tylosin. Ultrasonics Sonochemistry, 67, 105114. https://doi.org/10.1016/j.ultsonch.2020.105114.
  • Yuan, Y., Peng, C., Yang, S., Xu, M., Feng, J., Li, X., & Zhang, J. (2020). Rapid and facile method to prepare oxide precursor solution by using sonochemistry technology for WZTO thin film transistors. Royal Society of Chemistry Advances, 10(47), 28186-28192. https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra05245k.
  • Zhang Y. (2016). Advances in social science. education and humanities research. Atlantic Press volume 91.
  • Zinatloo-Ajabshir, S., Baladi, M., Amiri, O., & Salavati-Niasari, M. (2020). Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Separation and Purification Technology, 248, 117062-117073. https://doi.org/10.1016/j.seppur.2020.117062
  • Zou, Y., Wu, H., Hu, Y., Liu, H., Zhao, X., Ji, H., & Shi D. (2011). A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrasonics Sonochemistry, 18, 708-712. https://doi.org/10.1016/j.ultsonch.2010.11.012

Year 2025, Volume: 3 Issue: 1, 36 - 49, 30.04.2025
https://doi.org/10.62425/rtpharma.1637304

Abstract

References

  • Abdelmonsef, A. H., El-Saghier, A. M., & Kad, A. M. (2023). Ultrasound-assisted green synthesis of triazole-based azomethine/thiazolidin-4-one hybrid inhibitors for cancer therapy through targeting dysregulation signatures of some Rab proteins. Green Chemistry Letters and Reviews, 16, 2150394. https://doi.org/10.1080/17518253.2022.2150394
  • Adewuyi, Y. G. (2005). Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environmental Science & Technology, 39(22), 8557-8570. https://doi.org/10.1021/es0509127
  • Alves Filho, E. G., Sousa Valéria, M., Rodrigues, S., de Brito, E. S., & Fernandes, F. A. N. (2020). Green ultrasound-assisted extraction of chlorogenic acids from sweet potato peels and sonochemical hydrolysis of caffeoylquinic acids derivatives. Ultrasonics Sonochemistry, 63, 104911. https://doi.org/10.1016/j.ultsonch.2019.104911
  • Anna, G. S. S., Machado, P., Sauzem, P. D., Rosa, F. A., Rubin, M. A., Ferreira, J., Bonacorso, H. G., Zanatta, N., & Martins, M. A. P. (2009). Ultrasound promoted synthesis of 2-imidazolines in water: A greener approach toward monoamine oxidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 19(2), 546-549. https://doi.org/10.1016/j.bmcl.2008.03.001
  • Asberg, A. (1967). Ultrasonic cinematography of the living heart. Ultrasonics, 5(2), 113-117. https://doi.org/10.1016/S0041-624X(67)80012-X
  • Asfaram, A., Ghaedi, M., Abidi, H., Javadian, H., Zoladl, M., & Sadeghfar, F. (2018). Synthesis of Fe3O4@CuS@Ni2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. Ultrasonics Sonochemistry, 44, 240-250. https://doi.org/10.1016/j.ultsonch.2018.02.011
  • Avalos, M., Babiano, R., Cabello, N., Cintas, P., Hursthouse, M. B., Jiménez, J. L., Light, M. E., & Palacios, J. C. (2003). Thermal and sonochemical studies on the Diels-Alder cycloadditions of masked o-benzoquinones with furans: new insights into the reaction mechanism. The Journal of Organic Chemistry, 68, 7193-7203. https://doi.org/10.1021/jo0348322
  • Barmin, R. A., Moosavifar, M., Dasgupta, A., Herrmann, A., Kiessling, F., Pallares, R. M., & Lammers, T. (2023). Polymeric materials for ultrasound imaging and therapy†. Chemical Science, 43, 11941-11954. https://doi.org/10.1039/D3SC04339H.
  • Bayrami, A., Alioghli, S., Rahim Pouran, S., Habibi-Yangjeh, A., Khataee, A., & Ramesh, S. (2019). A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial, and oxidative activity evaluation. Ultrasonics Sonochemistry, 55, 57-66. https://doi.org/10.1016/j.ultsonch.2019.03.010
  • Bendicho, C., De La Calle, I., Pena, F., Costas, M., Cabaleiro, N., & Lavilla, I. (2012). Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry. Trac-Trends in Analytical Chemistry, 31, 50-60. https://doi.org/10.1016/j.trac.2011.06.018
  • Bhuyan, P. Bhuyan, A. J., & Saikia, L. (2020). Chapter 7 - Sonochemical protocol for coupling reactions, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 177-201. https://doi.org/10.1016/B978-0-12-819540-6.00007-3
  • Blanco, M. M., Reamírez, M. A., Caterina, M. C., Perillo, I. A., Oppezzo, G. A., Shmidt, M. S. Gutkind, G. O., Di Conza, J., & Salerno, A. (2020). Ultrasound promoted synthesis and antimicrobial evaluation of novel seven and eight-membered 1,3-disubstituted cyclic amidinium salts. The Open Medicinal Chemistry Journal, 10, 139-152. http://www.scirp.org/journal/Paperabs.aspx?PaperID=106129
  • Bremner, D. H., Burgess, A. E., & Chand, R. (2011). The chemistry of ultrasonic degradation of organic compounds. Current Organic Chemistry, 15(2), 168-177. https://doi.org/10.2174/138527211793979862
  • Busnel, R. G., Picard, D., & Bouzigues, H. (1953). Rapports entre la longueur d'onde et l'oxydation de l'iodure de potassium par les ultrasons. Journal de Chimie Physique, 50, 97-101. https://doi.org/10.1051/jcp/1953500097
  • Cabello, N., Cintas, P., & Luche, J. L. (2003). Sonochemical effects in the addition of furan to masked ortho-benzoquinones. Ultrasonics Sonochemistry, 10, 25-31. https://doi.org/10.1016/S1350-4177(02)00103-7
  • Casey, P., Alasmar, M., McLaughlin, J., Ang, Y., McPhee, J., Heire, P., & Sultan J. (2022). The current use of ultrasound to measure skeletal muscle and its ability to predict clinical outcomes: A systematic review. The Journal of Cachexia, Sarcopenia and Muscle, 13(5), 2298-2309. https://doi.org/10.1002/jcsm.13041
  • Chate, A. V., Joshi, R. S., Mandhane, P. G., & Gill, C. H. (2011). An Improved Procedure for the Synthesis of 1,5-Benzothiazepines Using Ceric Ammonium Nitrate (CAN). Korea Oopen Access Journals, 55(5), 776-780. https://www.kci.go.kr/kciportal/landing/article.kci?arti_id=ART001596633.
  • Chatel, G. (2019). Sonochemistry in nanocatalysis: the use of ultrasound from the catalyst synthesis to the catalytic reaction. In Current Opinion in Green and Sustainable Chemistry, 15, 1-6. https://doi.org/10.1016/j.cogsc.2018.07.004
  • Chen, F., Zhang, M., & Hui Yang, C. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: a review. Ultrasonics Sonochemistry, 63, 104953-104964. https://doi.org/10.1016/j.ultsonch.2019.104953
  • Chen, R., Li, Y., Dong, H., Liu, Z., Li, S,. Yang S., & Li, X. (2012). Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrasonics Sonochemistry, 19(6), 1160-1168. https://doi.org/10.1016/j.ultsonch.2012.03.008
  • Chunxia, C., Minghui, L., Zhihui, L., Junting, W., Zhengchao, T., Tianyu, Z., & Ming, Y. (2013). Synthesis and evaluation of 2-amino-4h-pyran-3-carbonitrile derivatives as antitubercular agents. Open Journal of Medicinal Chemistry, 3, 128-135. http://dx.doi.org/10.4236/ojmc.2013.34015.
  • Cravotto, G., Borretto, E., Oliverio, M., Procopio, A., & Penoni, A. (2015). Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects. Catalysis Communications, 63, 2-9. https://doi.org/10.1016/j.catcom.2014.12.014
  • Crawford, D. E. (2017). Solvent-free sonochemistry: Sonochemical organic synthesis in the absence of a liquid medium. The Beilstein Journal of Organic Chemistry, 13, 1850-1856. https://doi.org/10.3762/bjoc.13.179
  • Crum, L. A., Mason, T. J., Reisse, J., & Suslick, K. S., eds. (1999) Sonochemistry and Sonoluminescence. Kluwer Publishers: Dordrecht, Netherlands, NATO ASI Series C, 524. https://www.researchgate.net/publication/259147036_Sonochemistry_and_Sonoluminescence_NATO_ASI_Series.
  • Cruz-Benítez, M. M., Gónzalez-Morones, P., Hernández-Hernández, E., Villagómez-Ibarra, J. R., Castro-Rosas, J., Rangel-Vargas, E., Fonseca-Florido, H. A., & Gómez-Aldapa, C. A. (2021). Covalent functionalization of graphene oxide with fructose, starch, and micro-cellulose by sonochemistry. Polymers (Basel), 13, 1-14. https://doi.org/10.3390/polym13040490
  • Cum, G., Galli, G., Gallo, R., & Spadaro, A. (1992). Role of frequency in the ultrasonic activation of chemical reactions. Ultrasonics, 30(4), 267-270. https://doi.org/10.1016/0041-624X(92)90086-2 d'Acoustique, C. (1955). Étude d'un palpeur d'énergie ultrasonore. Annales Des Télécommunications, 10, 2-7. https://doi.org/10.1007/BF03016368
  • Davidson, R. S., Safdar, A., Spencer, J. D., & Robinson, B. (1987). Applications of ultrasound to organic chemistry. Ultrasonics., 25(1), 35. https://doi.org/10.1016/0041-624X(87)90009-6
  • del Fresno, J. M., Loira, I., Morata, A., González, C., Suárez-Lepe, J. A., & Cuerda, R. (2018). Application of ultrasound to improve lees ageing processes in red wines. Food Chemistry, 261, 157-163. https://doi.org/10.1016/j.foodchem.2018.04.041
  • Dey, S., & Rathod, V. K. (2013). Ultrasound assisted extraction of β-carotene from Spirulina platensis. Sonochemistry, 20(1), 271-276. https://doi.org/10.1016/j.ultsonch.2012.05.010
  • Dheyab, M. A., Aziz, A. A., & Jameel, M. S. (2021). Recent advances in inorganic nanomaterials synthesis using sonochemistry: a comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. Molecules, 26, 2453-2472. https://doi.org/10.3390/molecules26092453
  • Draye, M., Chatel, G., & Duwald, R. (2020). Ultrasound for Drug Synthesis: A Green Approach. Pharmaceuticals, 13, 23. https://doi.org/10.3390/ph13020023
  • Ebringerová, A., & Hromádková, Z. (2010). An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides Central European Journal of Chemistry, 8, 243-257. https://doi.org/10.2478/s11532-010-0006-2
  • Eftekhari-Sis, B., & Vahdati-Khajeh, S. (2013). Ultrasound-assisted green synthesis of pyrroles and pyridazines in water via three-component condensation reactions of arylglyoxals. Current Chemistry Letters, 2, 85-92. https://doi.org/10.5267/j.ccl.2013.02.002
  • Entezari, M. H., & Kruus, P. (1994). Effect of frequency on sonochemical reactions. I: Oxidation of iodide. Ultrasonics Sonochemistry, 1(2), S75-S79. https://doi.org/10.1016/1350-4177(94)90001-9
  • Ersan, A. C., Kipcak, A. S., Ozen, M. Y., & Tugrul N.( 2020). An accelerated and effective synthesis of zinc borate from zinc sulfate using sonochemistry. Main Group Metal Chemistry, 43, 7-14. https://doi.org/10.1515/mgmc-2020-0002
  • Fillion, H., & Luche, J. L. (1998). Cycloadditions. In Synthetic Organic Sonochemistry; Luche, J.-L., Ed.; Plenum Press: New York, 91-106. https://www.scirp.org/reference/referencespapers?referenceid=619449.
  • Gharat, N. N., & Rathod, V. K. (2020). Ultrasound-assisted organic synthesis. Green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis 1-41. https://doi.org/10.1016/B978-0-12-819540-6.00001-2.
  • Gogate, P. R., Mujumdar, S., & Pandit, A. B. (2003). Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction. Advances in Environmental Research, 7(2), 283-299. https://doi.org/10.1016/S1093-0191(01)00133-2
  • González-García, J., Sáez, V., Tudela, I., Díez-Garcia, M. I., Esclapez, M. D., & Louisnard, O. (2010). Sonochemical treatment of water polluted by chlorinated organocompounds. Water, 2, 28-74. https://doi.org/10.3390/w2010028
  • Gökçay Bilici, E., Tıraş, C., & Şimşek Kuş, N. (2024). The synthesis of indane derivatives and antioxidant effects. Monatshefte für Chemie/Chemical Monthly, 155, 1243-1248. https://doi.org/10.1007/s00706-024-03267-4
  • Guo, K., Mutter, R., Heal, W., Reddy, T. P. K., Cope, H., Pratt, S., Thompson, M. J., & Chen, B. (2008). Synthesis and evaluation of a focused library of pyridine dicarbonitriles against prion disease. The European Journal of Medicinal Chemistry, 43, 93-106. https://doi.org/10.1016/j.ejmech.2007.02.018
  • Guzen, K. P., Cella, R., & Stefani, H. A. (2006). Ultrasound enhanced synthesis of 1,5-benzodiazepinic heterocyclic rings. Tetrahedron Letters, 47(46)-13, 8133-8136. https://doi.org/10.1016/j.tetlet.2006.09.043
  • Hatami, M., Mahmoudian, M., Khalili, S., & Asl, M. M. (2020). Chapter 12 - Sonochemical protocol of polymer synthesis, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 325-353. https://doi.org/10.1016/B978-0-12-819540-6.00012-7
  • Henglein, A. 1987. Sonochemistry: historical developments and modern aspects. Ultrasonics, 25(1), 6-16. https://doi.org/10.1016/0041-624X(87)90003-5
  • Hickenboth, C. R., Moore, J. S., White, S. R., Sottos, N. R., Baudry, J., & Wilson, S. R. (2007). Biasing reaction pathways with mechanical force. Nature, 446, 423-427. https://doi.org/10.1038/nature05681
  • Hujjatul Islam, M., Paul, M. T. Y., Burheim, O. S., & Pollet, B. G. (2019). Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrasonics Sonochemistry, 59, 104711-104719. https://doi.org/10.1016/j.ultsonch.2019.104711
  • Ingole, N. W., & Khedkar, S. V. (2012). The ultrasound reactor technology-A technology for the future. International Journal of Advance Engineering and Research Development, 2(1), 72-75. https://www.researchgate.net/publication/234125818_The_ultrasound_reactor_technology-_A_technology_for_future
  • Jiao, H., Mao, Q., Razzaq, N., Ankri, R., & Cui, J. (2024). Ultrasound technology assisted colloidal nanocrystal synthesis and biomedical applications. Ultrasonics Sonochemistry, 103, 106798. https://doi.org/10.1016/j.ultsonch.2024.106798
  • Jin, H., Zhao, H., Zhao, F., Li, Sh., Liu, W., Zhou, G., Tao, K., & Hou, T. (2009). Efficient epoxidation of chalcones with urea-hydrogen peroxide under ultrasound irradiation. Ultrasonics Sonochemistry, 16, 304-307. https://doi.org/10.1016/j.ultsonch.2008.10.013
  • Juliano, P., Bainczyk, F., Swiergon, P., Supriyatna, M. I. M., Guillaume, C., Ravetti, L., Canamasas, P., Cravotto, G., & Xu X. Q. (2017). Extraction of olive oil assisted by high-frequency ultrasound standing waves. Ultrasonics Sonochemistry, 38, 104-114. https://doi.org/10.1016/j.ultsonch.2017.02.038
  • Kamble, O., Chatterjee, R., Dandela, R., & Shinde, S. (2022). Ultrasonic energy for construction of bioactive heterocycles. Tetrahedron, 120, 132893. https://doi.org/10.1016/j.tet.2022.132893
  • Kaur, N. (2019). Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation. Mini-Reviews in Organic Chemistry, 16(5), 481-503. doi. https://doi.org/10.2174/1570193X15666180709144028
  • Kerboua, K., Hamdaoui, O., & Al-Zahrani, S. (2021). Sonochemical production of hydrogen: a numerical model applied to the recovery of aqueous methanol waste under oxygen-argon atmosphere. Environmental Progress & Sustainable Energy, 40, 1-15. https://doi.org/10.1002/ep.13511
  • King, D. L. Steeg, C. N. & Ellis, K. (1973). Visualization of ventricular septal defects by cardiac ultrasonography. Circulation., 48, 1215-1220. https://doi.org/10.1161/01.CIR.48.6.1215
  • Kulkarni, V. M., & Rathod, V. K. (2014). Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrasonics Sonochemistry, 21(2), 606-611. https://doi.org/10.1016/j.ultsonch.2013.08.021
  • Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N., & Rai, D. K. (2018). Recent advances on application of ultrasound and pulsed electric field technologies in the extraction of bioactives from agro-industrial by-products. Food and Bioprocess Technology, 11(2), 223-241. https://doi.org/10.1007/s11947-017-1961-9
  • Leopold, G. R., & Sokoloff, J. (1973). Ultrasonic scanning in the diagnosis of biliary disease. Surgical Clinics of North America, 53(5), 1043-1052. https://doi.org/10.1016/s0039-6109(16)40133-7
  • Lévêquea, J. M., & Cravotto, G. (2006). Microwaves, power ultrasound, and ionic liquids. a new synergy in green. Microwave Chemistry, Chimia, 60(6), 313-320. https://doi.org/10.2533/000942906777836255
  • Ley, S. V., & Low, C. M. R. (1989). Ultrasound in synthesis. Springer-Verlag, London. https://link.springer.com/book/10.1007/978-3-642-74672-7
  • Li, J., Li, L., Li, T., Li, H., & Liu J. (1996). An efficient and convenient procedure for the synthesis of 5,5-disubstituted hydantoins under ultrasound. Ultrasonics Sonochemistry, 3, 141-143. https://doi.org/10.1016/1350-1477(96)00011-2
  • Li, J. T., Yang, W. Z., Chen, G. F., & Li, T. S. (2003). A facile synthesisbis(substituted benzylidene) cycloalkanones catalyzed by KF/Al2O3 under ultrasound irradiation. Synthetic Communications, 33(15), 2619-2625. https://doi.org/10.1081/SCC-120021982
  • Li, J. T., Zhang, X. H., & Lin, Z. P. (2007). An improved synthesis of 1,3,5-triaryl-2pyrazolines in acetic acid aqueous solution under ultrasound irradiation. The Beilstein Journal of Organic Chemistry, 3, 13-17. https://doi.org/10.1186/1860-5397-3-13
  • Lindley, J., & Mason, T. (1988). ChemInform Abstract: Sonochemistry. Part 2. Synthetic Applications. ChemInform, 198(20) https://doi.org/10.1002/chin.198820354
  • Li, Z., Dong, J., Zhang, H., Zhang, Y., Wang, H., Cui, X., & Wang, Z. (2021). Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics Nanoscale Advances, 3(1), 41-72. https://doi.org/10.1039/d0na00753f.
  • Low, C. (1995). Ultrasound in synthesis: natural products and supersonic reactions? Ultrasonics Sonochemistry, 2, S153-https://doi.org/10.1016/1350-4177(95)00017-Z
  • Lubinski, M. A., Emelianov, S. Y., & O'Donnell, M. (1999). Adaptive strain estimation using retrospective processing [medical US elasticity imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46(1), 97-107. https://doi.org/10.1109/58.741428
  • Machado, I. V., dos Santos, J. R., Januario, M. A. P., & Corrêa, A. G. (2021). Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrasonics Sonochemistry, 78, 105704. https://doi.org/10.1016/j.ultsonch.2021.105704
  • Mady, M. F., El-Kateb, A. A., Zeid, I. F., & Jørgensen, K. B. (2013). Comparative studies on conventional and ultrasound-assisted synthesis of novel homoallylic alcohol derivatives linked to sulfonyl dibenzene moiety in aqueous media. Journal of Chemistry, Article ID 364036. https://doi.org/10.1155/2013/364036
  • Mallakpour, S., & Azadi, E. (2020). Chapter 11 - Sonochemical protocol for the organo-synthesis of tio2 and its hybrids: Properties and applications, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 287-323. http://dx.doi.org/10.1016/B978-0-12-819540-6.00011-5
  • Martínez, J. M., Delso, C., Aguilar, D. E., Álvarez, I., & Raso, J. (2020). Organic-solvent-free extraction of carotenoids from yeast Rhodotorula glutinis by application of ultrasound under pressure. Ultrasonics Sonochemistry, 61, 104833-104842. https://doi.org/10.1016/j.ultsonch.2019.104833
  • Martínez, R. F., Cravotto, G., & Cintas, P. (2021). Organic Sonochemistry: A Chemist’s Timely Perspective on Mechanisms and Reactivity. The Journal of Organic Chemistry, 86, 13833-13856. https://doi.org/10.1021/acs.joc.1c00805
  • Mason, T. J. (1990). In: chemistry with ultrasound. T.J. Mason (Ed.). Ch. 1:1-26, Elsevier Applied Science, London. Mason, T. J. (1990). Sonochemistry: The uses of ultrasound in chemistry. The The Royal Society of Chemistry Cambridge.
  • Mason, T. J. (1997). Ultrasound in synthetic organic chemistry. Chemical Society Reviews, 26, 443-451. https://doi.org/10.1039/CS9972600443.5
  • Mason, T. J., & Bernal, V. S. (2003). Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrasonics Sonochemistry, 10(4-5), 175-179. https://doi.org/10.1016/S1350-4177(03)00086-5
  • Mason, T.J., & Lorimer, J. P. (1988). Sonochemistry (Theory, Applications and Uses of Ultrasound in Chemistry). Ellis Horwood Limited, New York. Mason, T. J., Lorimer, J. P., & Bates, D. M. (1992). Quantifying sonochemistry: Casting some light on a ‘black art’. Ultrasonics, 30(1), 40-42. https://doi.org/10.1016/0041-624X(92)90030-P
  • Mason, T. J., Lorimer, J. P., & Walton, D. J. (1990). Sonochemistry. Ultrasonics, 28(5), 333-337. https://doi.org/10.1016/0041-624X(90)90041-L
  • Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253-S260. https://doi.org/10.1016/S1350-4177(96)00034-X
  • Monsef, R., Ghiyasiyan-Arani, M., Amiri, O., & Salavati-Niasari, M. (2019). Sonochemical synthesis, characterization and application of PrVO4 nanostructures as an effective photocatalyst for discoloration of organic dye contaminants in wastewater. Ultrasonics Sonochemistry, 61, 104822-104836. https://doi.org/10.1016/j.ultsonch.2019.104822
  • Naddeo, V., Belgiorno, V., Kassinos, D., Mantzavinos, & D., Meric, S. (2010). Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters. Ultrasonics Sonochemistry, 17(1), 179-185. https://doi.org/10.1016/j.ultsonch.2009.04.003
  • Navjeet, K. (2019). Synthesis of Five-Membered Heterocycles Containing Nitrogen Heteroatom Under Ultrasonic Irradiation. Mini-Reviews in Organic Chemistry, 16(5), 481-503. http://dx.doi.org/10.2174/1570193X15666180709144028
  • Nejumal, K. K., Manoj, P. R., Aravind, K., & Aravindakumar, C. T. (2014). Sonochemical degradation of a pharmaceutical waste, atenolol, in aqueous medium. Environmental Science and Pollution Research, 21(6), 4297-4308. https://doi.org/10.1007/s11356-013-2301-x
  • Oge, A., Maviş, M. E., Yolçan, C., & Aydoğan, F. (2012). Solvent-free Michael addition of 2-cyclohexenone under ultrasonic irradiation in the presence of long chain dicationic ammonium salts. Turkish Journal of Chemistry, 36, 137-146. https://doi.org/10.3906/kim-1104-63.
  • Ojha, K. S., Aznar, R., O’Donnell, C., & Tiwari, B. K. (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC - Trends in Analytical Chemistry, 122, 115663-115673. https://doi.org/10.1016/j.trac.2019.115663
  • Olson, T., & Barbier, P. (1994). Oxidation kinetics of natural organic matter by sonolysis and ozone. Water Research, 28, 1383-1391. https://doi.org/10.1016/0043-1354(94)90305-0
  • Ophir, J., Cespedes, I., Garra, B., Ponnekanti, H., Huang, Y., & Maklad, N. (1996). Elastography: Ultrasonic imaging of tissue strain and elastic modulus in vivo. European Journal of Ultrasound, 3(1), 49-70. https://doi.org/10.1016/0929-8266(95)00134-4
  • Paniwnyk, L., Beaufoy, E., Lorimer, J. P., & Mason, T. J. (2001). The extraction of rutin from flower buds of Sophora japonica. Ultrasonics Sonochemistry, 8(3), 299-301. https://doi.org/10.1016/S1350-4177(00)00075-4
  • Paniwnyk, L., Cai, H., Albu, S., Mason, T. J., & Cole, R. (2009). The enhancement and scale up of the extraction of anti-oxidants from Rosmarinus officinalis using ultrasound. Ultrasonics Sonochemistry, 16(2), 287-292. https://doi.org/10.1016/j.ultsonch.2008.06.007
  • Peters, D. (1996). Ultrasound in materials chemistry. Journal of Materials Chemistry, 6, 1605-1618. https://doi.org/10.1039/JM9960601605
  • Petrier, C., & Francony A. (1997). Incidence of wave-frequency on the reaction rates during ultrasonic wastewater treatment. Water Science and Technology, 35(4), 175-180. https://doi.org/10.1016/S0273-1223(97)00023-1
  • Rastogi, N. K. (2011). Opportunities and challenges in application of ultrasound in food processing. Critical Reviews in Food Science and Nutrition, 51(8), 705-722. https://doi.org/10.1080/10408391003770583.
  • Regen, S. L., & Singh, A. (1982). Biphasic sonochemistry. convenient generation of dichlorocarbene1. Journal of Organic Chemistry, 47, 1587-1588. https://doi.org/10.1021/jo00347a047.
  • Renaud, P. (1953). Lois de l'oxydation de l'iodure de potassium par les ultrasons. Journal de Chimie Physique, 50, 136. https://doi.org/10.1051/jcp/1953500136.
  • Richards, W., & Loomis, A. J. 1927. The chemical effects of high frequency sound waves i. a preliminary survey. Journal of the American Chemical Society, 49, 3086. https://doi.org/10.1021/ja01411a015.
  • Riesz, P., & Kondo, T. (1992). Free radical formation induced by ultrasound and its biological implications. Free Radical Biology and Medicine, 13(3), 247-270. https://doi.org/10.1016/0891-5849(92)90021-8.
  • Riesz, P., Kondo, T., & Krishna, C. M. (1990). Sonochemistry of volatile and non-volatile solutes in aqueous solutions: e.p.r. and spin trapping studies. Ultrasonics, 28(5), 295-303. https://doi.org/10.1016/0041-624X(90)90035-M.
  • Robin, J., Tanter, M., & Pernot, M. (2017). A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications. Physics in Medicine & Biology, 62, 7471-7481. https://doi.org/10.1088/1361-6560/aa8211
  • Safari, J., Banitaba, S. H., & Khalili S. D. (2012). Ultraosund-promoted an ecient method for one-pot synthesis of 2-amino-4,6-diphenylnicotinonitriles in water: A rapid procedure without catalyst. Ultrasonics Sonochemistry, 19, 1061-1069. https://doi.org/10.1016/j.ultsonch.2012.01.005.
  • Sathishkumar, P., Mangalaraja, R. V., & Anandan S. (2016). Review on the recent improvements in sonochemical and combined sonochemical oxidation processes-A powerful tool for destruction of environmental contaminants. Renewable and Sustainable Energy Reviews, 55(4), 426-454. https://doi.org/10.1016/j.rser.2015.10.139.
  • Savun-Hekimoğlu, B. (2020). A review on sonochemistry and its environmental applications. Acoustics, 2, 766-775. https://doi.org/10.3390/acoustics2040042.
  • Savun-Hekimoğlu, B., & Ince, N. H. (2017). Decomposition of PPCPs by ultrasound-assisted advanced Fenton reaction: a case study with salicylic acid. Ultrasonics Sonochemistry, 39, 243-249. https://doi.org/10.1016/j.ultsonch.2017.04.013.
  • Seidi, S., & Yamini, Y. (2012). Analytical sonochemistry; developments, applications, and hyphenations of ultrasound in sample preparation and analytical techniques. Central European Journal of Chemistry, 10, 938-976. https://doi.org/10.2478/s11532-011-0160-1.
  • Serna-Galvis, E. A., Silva-Agredo, J., Botero-Coy, A. M., Moncayo-Lasso, A., Hernández, F., & Torres-Palma, R. A. (2019). Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process. Science of the Total Environment, 670, 623-632. https://doi.org/10.1016/j.scitotenv.2019.03.153.
  • Sezen, H., Şimşek Kuş, N., Özdemir, S., & Tollu, G. (2023). The addition of ketene to olefins under ultrasonic conditions: evaluation of the biological activities of halobicyclic lactone. ChemistrySelect, 8(13), e202204042. https://doi.org/10.1002/slct.202204042.
  • Shabir, G., Shafique, I., & Saeed, A. (2022). Ultrasound assisted synthesis of 5-7 membered heterocyclic rings in organic molecules. Journal of Heterocyclic Chemistry, 59(10), 669-1702. https://doi.org/10.1002/jhet.4527.
  • Sharda, S., Prasad, D. N., Kumar, S., & Singh, R. K. (2018). Hexachlorocyclotriphosphazene Catalyzed One-Pot Multicomponent Synthesis of 2,3-Dihydro-1H-1,5-benzodiazepines. Asian Journal of Organic & Medicinal Chemistry, 3(4), 176-180. http://dx.doi.org/10.14233/ajomc.2018.AJOMC-P151.
  • Sharma, R., & Kumar, A. (2020). Sonochemical protocol for catalyst-free organic synthesis. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 43-70. https://doi.org/10.1016/B978-0-12-819540-6.00002-4.
  • Shelke, K. F. Sapkal, S. B., & Shingare, M. S. (2009). Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media. Chinese Chemical Letters, 20, 283. https://doi.org/10.1016/j.cclet.2008.11.033.
  • Shoh, A. (1988). Industrial Applications of Ultrasound, in Ultrasound: Its Chemical, Physical, and Biological Effects. VCH Publishers Inc, New York. 97-122. https://doi.org/10.1121/1.1975495.
  • Silva, B. N. M., Pinto, A. C., Silva, F. C., Ferreira, V. F., & Silva, B. V. (2016). Ultrasound-Assisted Synthesis of Isatin-Type 5’-(4-Alkyl/Aryl-1H-1,2,3-triazoles) via 1,3-Dipolar Cycloaddition Reactions. Journal of the Brazilian Chemical Society, 27(12), 2378-2382. https://doi.org/10.5935/0103-5053.20160121.
  • Strandness, JrMD, D. E., Schultz MD, MD R. D., Sumner MD, D. S., & Rushmer, R. F. 1967. Ultrasonic cinematography of the living heart. The American Journal of Surgery, 113(3), 311-320. https://doi.org/10.1016/0002-9610(67)90272-3.
  • Suslick, K. S. (1988).Ultrasound: Its chemical, physical and biological effects. VCH Publishers, New York, 336. Suslick, K. S., Hyeon, T., Fang, M., Ries, J. T., & Cichowlas, A. A. (1996). Sonochemical synthesis of nanophase metals, alloys and carbides. Materials Science Forum, 225-227, 903-912. https://doi.org/10.4028/www.scientific.net/msf.225-227.903.
  • Tran, P. H., & Nguyen, H. T. (2020). Chapter 4 - Sonochemical protocol for alkylation reactions, green sustainable process for chemical and environmental engineering and science. Green Sustainable Process for Chemical and Environmental Engineering and Science Sonochemical Organic Synthesis, 95-111. https://doi.org/10.1016/B978-0-12-819540-6.00004-8.
  • Wang, A., Kang, D., Zhang, W., Zhang, C., Zou, Y., & Zhou, G. (2018). Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound. Food Chemistry, 245, 724-730. https://doi.org/10.1016/j.foodchem.2017.12.003.
  • Wang, S., & Zhu, Z. (2005). Sonochemical treatment of fly ash for dye removal from wastewater. Journal of Hazardous Materials, 126(1-3), 91-95. https://doi.org/10.1016/j.jhazmat.2005.06.009.
  • Weissler, A., Pecht, I., & Anbar, M. (1965). Ultrasound Chemical Effects on Pure Organic Liquids. Science, 150(3701), 1288.
  • Wieland, K,. Tauber, S., Gasser, C., Rettenbacher, L. A., Lux, L., Radel, S., & Lendl, B. (2019). In-Line ultrasound-enhanced raman spectroscopy allows for highly sensitive analysis with improved selectivity in suspensions. Analytical Chemistry, 91(22), 14231-4238. https://doi.org/10.1021/acs.analchem.9b01105.
  • Wood, R. W., & Loomis, A. L. (1927). The physical and biological effects of high-frequency sound-waves of great intensity. Philosophical Magazine, 4(22), 417-436. https://doi.org/10.1080/14786440908564348.
  • Yadav, V. K., Ali, D., Khan, S. H., Gnanamoorthy, G., Choudhary, N., Yadav, K. K., Thai, V. N., Hussain, S. A., & Manhrdas, S. (2020). Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials, 10, 1-17. https://doi.org/10.3390/nano10081551.
  • Yousef Tizhoosh, N., Khataee, A., Hassandoost, R., Darvishi Cheshmeh Soltani, R., & Doustkhah, E. (2020). Ultrasound-engineered synthesis of WS2@CeO2 heterostructure for sonocatalytic degradation of tylosin. Ultrasonics Sonochemistry, 67, 105114. https://doi.org/10.1016/j.ultsonch.2020.105114.
  • Yuan, Y., Peng, C., Yang, S., Xu, M., Feng, J., Li, X., & Zhang, J. (2020). Rapid and facile method to prepare oxide precursor solution by using sonochemistry technology for WZTO thin film transistors. Royal Society of Chemistry Advances, 10(47), 28186-28192. https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra05245k.
  • Zhang Y. (2016). Advances in social science. education and humanities research. Atlantic Press volume 91.
  • Zinatloo-Ajabshir, S., Baladi, M., Amiri, O., & Salavati-Niasari, M. (2020). Sonochemical synthesis and characterization of silver tungstate nanostructures as visible-light-driven photocatalyst for waste-water treatment. Separation and Purification Technology, 248, 117062-117073. https://doi.org/10.1016/j.seppur.2020.117062
  • Zou, Y., Wu, H., Hu, Y., Liu, H., Zhao, X., Ji, H., & Shi D. (2011). A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrasonics Sonochemistry, 18, 708-712. https://doi.org/10.1016/j.ultsonch.2010.11.012
There are 123 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Review Article
Authors

Nermin Şimşek Kuş 0000-0002-5402-2614

Submission Date February 11, 2025
Acceptance Date April 29, 2025
Publication Date April 30, 2025
Published in Issue Year 2025 Volume: 3 Issue: 1

Cite

APA Şimşek Kuş, N. (2025). Usage of sonochemistry in medicine, industry, environment, and synthesis. Recent Trends in Pharmacology, 3(1), 36-49. https://doi.org/10.62425/rtpharma.1637304