Year 2023,
Volume: 1 Issue: 1, 1 - 10, 30.04.2023
Betul Cicek
,
Ali.tgzd Tgzd
,
Betül Çiçek
,
Esra Şentürk
,
Mustafa Gül
,
Fatma Yesilyurt
,
Ahmet Hacımüftüoğlu
References
- Ahn, H., Im, E., Lee, D. Y., Lee, H.-J., Jung, J. H., & Kim, S.-H. (2019). Antitumor effect of Pyrogallol via miR-134 mediated S phase arrest and inhibition of PI3K/AKT/Skp2/cMyc signaling in hepatocellular carcinoma. International journal of molecular sciences, 20(16), 3985.
- Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216.
- Bardaweel, S. K., Gul, M., Alzweiri, M., Ishaqat, A., ALSalamat, H. A., & Bashatwah, R. M. (2018). Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. The Eurasian journal of medicine, 50(3), 193.
- Bhoopathi, P., Mannangatti, P., Emdad, L., Das, S. K., & Fisher, P. B. (2021). The quest to develop an effective therapy for neuroblastoma. Journal of Cellular Physiology, 236(11), 7775-7791.
Blagosklonny, M. (2005). Carcinogenesis, cancer therapy and chemoprevention. Cell Death & Differentiation, 12(6), 592-602.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
- Briguglio, G., Costa, C., Pollicino, M., Giambò, F., Catania, S., & Fenga, C. (2020). Polyphenols in cancer prevention: New insights. International Journal of Functional Nutrition, 1(2), 1-1.
- Brodeur, G. M. (2018). Spontaneous regression of neuroblastoma. Cell and tissue research, 372(2), 277-286.
- Ferah Okkay, I., Okkay, U., Cicek, B., Yilmaz, A., Yesilyurt, F., Mendil, A. S., & Hacimuftuoglu, A. (2021).
Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson’s disease. Molecular Biology Reports, 48(12), 7711-7717.
- Glasauer, A., & Chandel, N. S. (2014). Targeting antioxidants for cancer therapy. Biochemical pharmacology, 92(1), 90-101.
- Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130-7139.
- Han, Y. H., Kim, S. Z., Kim, S. H., & Park, W. H. (2008). Pyrogallol inhibits the growth of human lung cancer Calu-6 cells via arresting the cell cycle arrest. Toxicology in Vitro, 22(6), 1605-1609.
- Hayes, J. D., Dinkova-Kostova, A. T., & Tew, K. D. (2020). Oxidative stress in cancer. Cancer cell.
- Kim, S. W., Han, Y. W., Lee, S. T., Jeong, H. J., Kim, S. H., Kim, I. H., Kim, S. Z. (2008). A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 47(2), 114-125.
Koo, B.-S., Lee, W.-C., Chung, K.-H., Ko, J.-H., & Kim, C.-H. (2004). A water extract of Curcuma longa L.(Zingiberaceae) rescues PC12 cell death caused by pyrogallol or hypoxia/reoxygenation and attenuates hydrogen peroxide induced injury in PC12 cells. Life sciences, 75(19), 2363-2375.
- Moloney, J. N., & Cotter, T. G. (2018). ROS signalling in the biology of cancer. Paper presented at the Seminars in cell & developmental biology.
- Park, W. H., Han, Y. H., Kim, S. H., & Kim, S. Z. (2007a). Pyrogallol, ROS generator inhibits As4. 1 juxtaglomerular cells via cell cycle arrest of G2 phase and apoptosis. Toxicology, 235(1-2), 130-139.
- Park, W. H., Han, Y. W., Kim, S. H., & Kim, S. Z. (2007b). A superoxide anion generator, pyrogallol induces apoptosis in As4. 1 cells through the depletion of intracellular GSH content. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 619(1-2), 81-92.
- Qureshi, S. S., Bhagat, M. G., Kembhavi, S. A., Chinnaswamy, G., Vora, T., Prasad, M., Shah, S. (2018). A cross-sectional study of the distribution of pediatric solid tumors at an Indian tertiary cancer center. Indian journal of cancer, 55(1), 55.
- Saeki, K., Hayakawa, S., Isemura, M., & Miyase, T. (2000). Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry, 53(3), 391-394.
- Sawada, M., Nakashima, S., Kiyono, T., Nakagawa, M., Yamada, J., Yamakawa, H., Nozawa, Y. (2001). p53 regulates ceramide formation by neutral sphingomyelinase through reactive oxygen species in human glioma cells. Oncogene, 20(11), 1368-1378.
- Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462.
- Schumacker, P. T. (2006). Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer cell, 10(3), 175-176.
- Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of functional foods, 18, 820-897.
- Siegel, S., & Siegel, B. (1958). Autoxidation of pyrogallol: general characteristics and inhibition by catalase. Nature, 181(4616), 1153-1154.
- Sun, L.-r., Zhou, W., Zhang, H.-m., Guo, Q.-s., Yang, W., Li, B.-j.,Cui, R.-j. (2019). Modulation of multiple signaling pathways of the plant-derived natural products in cancer. Frontiers in oncology, 9, 1153.
- Tang, J. Y., Huang, H. W., Wang, H. R., Chan, Y. C., Haung, J. W., Shu, C. W., Chang, H. W. (2018). 4β‐Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. Environmental toxicology, 33(3), 295-304.
- Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Liu, J. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer cell, 10(3), 241-252.
- Wendel, A. (1981). [44] Glutathione peroxidase. In Methods in enzymology (Vol. 77, pp. 325-333): Elsevier.
Wheeler, C. R., Salzman, J. A., Elsayed, N. M., Omaye, S. T., & Korte Jr, D. W. (1990). Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Analytical biochemistry, 184(2), 193-199.
- Yang, C.-J., Wang, C.-S., Hung, J.-Y., Huang, H.-W., Chia, Y.-C., Wang, P.-H., Huang, M.-S. (2009). Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. Lung Cancer, 66(2), 162-168.
- Zafar, A., Wang, W., Liu, G., Wang, X., Xian, W., McKeon, F., Zhang, R. (2021). Molecular targeting therapies for neuroblastoma: Progress and challenges. Medicinal Research Reviews, 41(2), 961-1021.
Pyrogallol Induces Selective Cytotoxicity in SH-SY5Y and Cortical Neuron Cells
Year 2023,
Volume: 1 Issue: 1, 1 - 10, 30.04.2023
Betul Cicek
,
Ali.tgzd Tgzd
,
Betül Çiçek
,
Esra Şentürk
,
Mustafa Gül
,
Fatma Yesilyurt
,
Ahmet Hacımüftüoğlu
Abstract
Objective: We aimed to evaluate whether pyrogallol (PG) has selective cytotoxic effects on neuroblastoma (SH-SY5Y) cells and cortical neuronal cells.
Materials and Methods: SH-SY5Y cells and cortical neuronal cells were treated with PG at different concentrations for 24 h. Cytotoxicity was assessed by MTT test. Catalase (CAT), glutathione reductase (GR) activities, and glutathione (GSH) levels were also quantified.
Results: Treatment of neuroblastoma cells with PG (20–200 μM) significantly decreased cell viability. It had no effect on the cell viability of cortical neuronal cells at 20-80 μM. However, it decreased the viability in cortical neuronal cells at 200 μM. CAT, GR, and GSH levels were notably reduced in neuroblastoma cells treated with 200 μM of PG; but, only GSH was reduced in cortical neuronal cells at this concentration.
Conclusion: PG had a specific cytotoxic effect in neuroblastoma cells but generally spared neuronal cells. PG decreased the antioxidant enzyme activities in neuroblastoma cells suggesting that it kills cancer cells by causing increased oxidative stress. However, having a cytotoxic effect in lower concentrations of PG without decreasing antioxidant enzyme activities suggests that PG may have alternative mechanisms for cytotoxicity in lower concentrations.
References
- Ahn, H., Im, E., Lee, D. Y., Lee, H.-J., Jung, J. H., & Kim, S.-H. (2019). Antitumor effect of Pyrogallol via miR-134 mediated S phase arrest and inhibition of PI3K/AKT/Skp2/cMyc signaling in hepatocellular carcinoma. International journal of molecular sciences, 20(16), 3985.
- Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216.
- Bardaweel, S. K., Gul, M., Alzweiri, M., Ishaqat, A., ALSalamat, H. A., & Bashatwah, R. M. (2018). Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. The Eurasian journal of medicine, 50(3), 193.
- Bhoopathi, P., Mannangatti, P., Emdad, L., Das, S. K., & Fisher, P. B. (2021). The quest to develop an effective therapy for neuroblastoma. Journal of Cellular Physiology, 236(11), 7775-7791.
Blagosklonny, M. (2005). Carcinogenesis, cancer therapy and chemoprevention. Cell Death & Differentiation, 12(6), 592-602.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
- Briguglio, G., Costa, C., Pollicino, M., Giambò, F., Catania, S., & Fenga, C. (2020). Polyphenols in cancer prevention: New insights. International Journal of Functional Nutrition, 1(2), 1-1.
- Brodeur, G. M. (2018). Spontaneous regression of neuroblastoma. Cell and tissue research, 372(2), 277-286.
- Ferah Okkay, I., Okkay, U., Cicek, B., Yilmaz, A., Yesilyurt, F., Mendil, A. S., & Hacimuftuoglu, A. (2021).
Neuroprotective effect of bromelain in 6-hydroxydopamine induced in vitro model of Parkinson’s disease. Molecular Biology Reports, 48(12), 7711-7717.
- Glasauer, A., & Chandel, N. S. (2014). Targeting antioxidants for cancer therapy. Biochemical pharmacology, 92(1), 90-101.
- Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130-7139.
- Han, Y. H., Kim, S. Z., Kim, S. H., & Park, W. H. (2008). Pyrogallol inhibits the growth of human lung cancer Calu-6 cells via arresting the cell cycle arrest. Toxicology in Vitro, 22(6), 1605-1609.
- Hayes, J. D., Dinkova-Kostova, A. T., & Tew, K. D. (2020). Oxidative stress in cancer. Cancer cell.
- Kim, S. W., Han, Y. W., Lee, S. T., Jeong, H. J., Kim, S. H., Kim, I. H., Kim, S. Z. (2008). A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 47(2), 114-125.
Koo, B.-S., Lee, W.-C., Chung, K.-H., Ko, J.-H., & Kim, C.-H. (2004). A water extract of Curcuma longa L.(Zingiberaceae) rescues PC12 cell death caused by pyrogallol or hypoxia/reoxygenation and attenuates hydrogen peroxide induced injury in PC12 cells. Life sciences, 75(19), 2363-2375.
- Moloney, J. N., & Cotter, T. G. (2018). ROS signalling in the biology of cancer. Paper presented at the Seminars in cell & developmental biology.
- Park, W. H., Han, Y. H., Kim, S. H., & Kim, S. Z. (2007a). Pyrogallol, ROS generator inhibits As4. 1 juxtaglomerular cells via cell cycle arrest of G2 phase and apoptosis. Toxicology, 235(1-2), 130-139.
- Park, W. H., Han, Y. W., Kim, S. H., & Kim, S. Z. (2007b). A superoxide anion generator, pyrogallol induces apoptosis in As4. 1 cells through the depletion of intracellular GSH content. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 619(1-2), 81-92.
- Qureshi, S. S., Bhagat, M. G., Kembhavi, S. A., Chinnaswamy, G., Vora, T., Prasad, M., Shah, S. (2018). A cross-sectional study of the distribution of pediatric solid tumors at an Indian tertiary cancer center. Indian journal of cancer, 55(1), 55.
- Saeki, K., Hayakawa, S., Isemura, M., & Miyase, T. (2000). Importance of a pyrogallol-type structure in catechin compounds for apoptosis-inducing activity. Phytochemistry, 53(3), 391-394.
- Sawada, M., Nakashima, S., Kiyono, T., Nakagawa, M., Yamada, J., Yamakawa, H., Nozawa, Y. (2001). p53 regulates ceramide formation by neutral sphingomyelinase through reactive oxygen species in human glioma cells. Oncogene, 20(11), 1368-1378.
- Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462.
- Schumacker, P. T. (2006). Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer cell, 10(3), 175-176.
- Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of functional foods, 18, 820-897.
- Siegel, S., & Siegel, B. (1958). Autoxidation of pyrogallol: general characteristics and inhibition by catalase. Nature, 181(4616), 1153-1154.
- Sun, L.-r., Zhou, W., Zhang, H.-m., Guo, Q.-s., Yang, W., Li, B.-j.,Cui, R.-j. (2019). Modulation of multiple signaling pathways of the plant-derived natural products in cancer. Frontiers in oncology, 9, 1153.
- Tang, J. Y., Huang, H. W., Wang, H. R., Chan, Y. C., Haung, J. W., Shu, C. W., Chang, H. W. (2018). 4β‐Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. Environmental toxicology, 33(3), 295-304.
- Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Liu, J. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer cell, 10(3), 241-252.
- Wendel, A. (1981). [44] Glutathione peroxidase. In Methods in enzymology (Vol. 77, pp. 325-333): Elsevier.
Wheeler, C. R., Salzman, J. A., Elsayed, N. M., Omaye, S. T., & Korte Jr, D. W. (1990). Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Analytical biochemistry, 184(2), 193-199.
- Yang, C.-J., Wang, C.-S., Hung, J.-Y., Huang, H.-W., Chia, Y.-C., Wang, P.-H., Huang, M.-S. (2009). Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. Lung Cancer, 66(2), 162-168.
- Zafar, A., Wang, W., Liu, G., Wang, X., Xian, W., McKeon, F., Zhang, R. (2021). Molecular targeting therapies for neuroblastoma: Progress and challenges. Medicinal Research Reviews, 41(2), 961-1021.