Nörolojik Rehabilitasyonda Sanal Gerçeklik Kullanımı ve Etkileri
Year 2026,
Volume: 16 Issue: 1, 188 - 192, 23.01.2026
Gönül Ertunç Gülçelik
,
Gamze Aydoğan
,
Rabia Terzi
,
Ömer Sayma
Abstract
Nörolojik rehabilitasyon, sinir sistemi hastalıkları veya travmaları sonucunda ortaya çıkan işlevsel kayıpları yönetme ve iyileştirme amacıyla multidisipliner bir yaklaşımla gerçekleştirilen karmaşık bir süreçtir. Nörolojik rehabilitasyon, bireylerin yaşam kalitesini artırmak, bağımsızlıklarını geri kazanmak ve günlük yaşam aktivitelerini en üst düzeye çıkarmak amacıyla uygulanan terapötik yöntemleri içerir. Geleneksel rehabilitasyon teknikleri, hastaların motor, duyu, kognitif ve psikososyal işlevlerini iyileştirmeye yöneliktir, ancak son yıllarda teknolojik gelişmelerin artmasıyla birlikte eğitim, uygulama, değerlendirme gibi birçok alanında kullanabilmesi gibi avantajları olan sanal gerçeklik (Virtual Reality) teknolojilerinin nörolojik rehabilitasyondaki potansiyeli giderek artmıştır. Gerçek zamanlı görsel geri bildirim sağlayan sanal gerçeklik teknolojilerinin nörolojik rehabilitasyon sürecinde hastaların aktif katılımını sağladığı için geleneksel yöntemlerle yapılan uygulamalara katkı sağlamaktadır. Sanal gerçeklik teknolojileri nörolojik hastaların nöroplastisite sürecine katkı sağlayarak, motor ve bilişsel fonksiyonlarını geliştirmekte böylece fonksiyonel kayıpları en aza indirmeye çalışarak yaşam kalitesine katkı sağlamaktadır. Bu derleme; nörolojik rehabilitasyonda sanal gerçeklik uygulamalarının rolünü ve etkisini incelemeyi amaçlamaktadır. Nörolojik rehabilitasyon alanında sanal gerçeklik teknolojileri ile ilgili daha fazla güncel, kanıta dayalı bilimsel araştırmaya ihtiyaç vardır.
Ethical Statement
Bu çalışma insan veya hayvan katılımcıları içermemektedir. Tüm prosedürler bilimsel ve etik ilkelere uygun olarak gerçekleştirilmiş olup, atıfta bulunulan tüm çalışmalar uygun şekilde kaynak gösterilmiştir.
References
-
1. Dumurgier J, Tzourio C. Epidemiology of neurological diseases in older adults. Rev Neurol (Paris). 2020;176(9):642-8. doi:10.1016/j.neurol.2020.01.356.
-
2. Kum R, Pehlivan E. Farklı fizyoterapi ve rehabilitasyon alanlarında telerehabilitasyon. Bandırma Onyedi Eylül Üniv Sağlık Bilim Araşt Derg. 2022;4(2):166-80. doi:10.46413/boneyusbad.1077637.
-
3. Yavuzarslan M, Demirkol D, Gülseçen S. Sanal gerçeklik teknolojilerinin inme geçiren hastaların rehabilitasyonundaki rolüne ilişkin bir literatür taraması. J Inf Syst Manag Res. 2020;2(1):42-9.
-
4. McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. JAMA. 2021;325(8):765-79. doi:10.1001/jama.2020.26858.
-
5. Hauser SL, Cree BA. Treatment of multiple sclerosis: a review. Am J Med. 2020;133(12):1380-90. doi:10.1016/j.amjmed.2020.05.049.
-
6. Cree BA, Arnold DL, Chataway J, Chitnis T, Fox RJ, Pozo Ramajo A, et al. Secondary progressive multiple sclerosis: new insights. Neurology. 2021;97(8):378-88. doi:10.1212/WNL.0000000000012323.
-
7. Yıldız A, Mustafaoğlu R, Kesiktaş FN. Spinal kord yaralanması olan hastalarda fiziksel engelliler için fiziksel aktivite ölçeği’nin (fefa) geçerlik ve güvenilirliği. Sakarya Univ Holist Sağlık Derg. 2024;6(3):450-63. doi:10.54803/sauhsd.1322366.
-
8. Calderone A, Cardile D, Gangemi A, De Luca R, Quartarone A, Corallo F, et al. Traumatic brain injury and neuromodulation techniques in rehabilitation: a scoping review. Biomedicines. 2024;12(2):438. doi:10.3390/biomedicines12020438.
-
9. Alashram AR. Virtual reality for upper limb rehabilitation in traumatic brain injury: a systematic review. Curr Phys Med Rehabil Rep. 2024;12:343-352. doi:10.1007/s40141-024-00455-5.
-
10. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548-60. doi:10.1001/jama.2019.22360.
-
11. Çapın TK. Sanal ve artırılmış gerçekliğin ortopedi ve travmatolojide uygulama alanları. Türk Ortoped Travmatol Birl Dern. 2024;23(1):66-72. doi:10.5578/totbid.dergisi.2024.11.
-
12. Fidancıoğlu NA, Kocamaz D, Yılmaz RC, Bayramlar K. Kanser rehabilitasyonunda kanıta dayalı teknolojik uygulamaların durumu ve öneriler: derleme makalesi. Türk Sağlık Bilim Araşt Derg. 2024;7(1):1-11. doi:10.51536/tusbad.1316859.
-
13. İldiz MK, Ağce ZB. Tam katılımlı sanal gerçekliğin rehabilitasyondaki kullanımının incelenmesi. Atlas J Med. 2022;1(3):19-29. doi:10.54270/atljm.2022.13.
-
14. Georgiev DD, Georgieva I, Gong Z, Nanjappan V. Georgiev GV. Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sci. 2021;11(2):221. doi:10.3390/brainsci11020221.
-
15. Akbaş RN. Vestibüler rehabilitasyonda sanal gerçeklik teknolojisi. İstanbul Gelişim Üniv Sağlık Bilim Derg. 2021;(15):639-45. doi:10.38079/igusabder.999714.
-
16. Riva G, Mancuso V, Cavedoni S, Stramba-Badiale C. Virtual reality in neurorehabilitation: a review of its effects on multiple cognitive domains. Expert Rev Med Devices. 2020;17(10):1035-61. doi:10.1080/17434440.2020.1825939.
-
17. Khan A, Podlasek A, Somaa F. Virtual reality in post-stroke neurorehabilitation–a systematic review and meta-analysis. Top Stroke Rehabil. 2023;30(1):53-72. doi:10.1080/10749357.2021.1990468.
-
18. Gülcan K, Güçlü-Gündüz A, Yaşar E, Ar U, Sucullu Karadağ Y, Saygılı F. The effects of augmented and virtual reality gait training on balance and gait in patients with Parkinson's disease. Acta Neurol Belg. 2023;123(5):1917-25. doi:10.1007/s13760-022-02147-0.
-
19. Sultan N, Khushnood K, Qureshi S, Altaf S, Khan MK, Malik AN, et al. Effects of virtual reality training using Xbox Kinect on balance, postural control, and functional independence in subjects with stroke. Games Health J. 2023;12(6):440-4. doi:10.1089/g4h.2022.0193.
-
20. Galperin I, Mirelman A, Schmitz-Hübsch T, Hsieh KL, Regev K, Karni A, et al. Treadmill training with virtual reality to enhance gait and cognitive function among people with multiple sclerosis: a randomized controlled trial. J Neurol. 2023;270(3):1388-401. doi:10.1007/s00415-022-11469-1.
-
21. Akıncı M, Burak M, Yaşar E, Kılıç RT. The effects of robot-assisted gait training and virtual reality on balance and gait in stroke survivors: a randomized controlled trial. Gait Posture. 2023;103:215-22. doi:10.1016/j.gaitpost.2023.05.013.
-
22. Doğan M, Ayvat E, Kılınç M. Telerehabilitation versus virtual reality supported task-oriented circuit therapy on upper limbs and trunk functions in patients with multiple sclerosis: a randomized controlled study. Mult Scler Relat Disord. 2023;71:104558. doi:10.1016/j.msard.2023.104558.
-
23. Goel T, Sharma N, Gehlot A, Srivastav AK. Effectiveness of immersive virtual reality training to improve sitting balance control among individuals with acute and sub-acute paraplegia: A randomized clinical trial. J Spinal Cord Med. 2023;46(6):964-74. doi:10.1080/10790268.2021.2012053.
-
24. Marcos-Antón S, Jardón-Huete A, Oña-Simbaña ED, Blázquez-Fernández A, Martínez-Rolando L, Cano-de-la-Cuerda R. sEMG-controlled forearm bracelet and serious game-based rehabilitation for training manual dexterity in people with multiple sclerosis: a randomised controlled trial. J Neuroeng Rehabil. 2023;20(1):110. doi:10.1186/s12984-023-01233-5.
-
25. Molhemi F, Mehravar M, Monjezi S, Salehi R, Negahban H, Shaterzadeh-Yazdi MJ, et al. Effects of exergaming on cognition, lower limb functional coordination, and stepping time in people with multiple sclerosis: a randomized controlled trial. Disabil Rehabil. 2023;45(8):1343-51. doi:10.1080/09638288.2022.2060332.
-
26. Ali AS, Kumaran DS, Unni A, Sardesai S, Prabhu V, Nirmal P, et al. Effectiveness of an intensive, functional, and gamified rehabilitation program on upper limb function in people with stroke (EnteRtain): a multicenter randomized clinical trial. Neurorehabil Neural Repair. 2024;38(4):243-56. doi:10.1177/15459683231222921.
-
27. Maranesi E, Casoni E, Baldoni R, Barboni I, Rinaldi N, Tramontana B, et al. The effect of non-immersive virtual reality exergames versus traditional physiotherapy in Parkinson’s disease older patients: preliminary results from a randomized-controlled trial. Int J Environ Res Public Health. 2022;19(22):14818. doi:10.3390/ijerph192214818.
-
28. Nair MS, Kulkarni VN, Shyam AK. Combined effect of virtual reality training (VRT) and conventional therapy on sitting balance in patients with spinal cord injury (SCI): randomized control trial. Neurol India. 2022;70(Suppl):S245-50. doi:10.4103/0028-3886.360934.
-
29. Hajebrahimi F, Velioglu HA, Bayraktaroglu Z, Helvaci Yilmaz N, Hanoglu L. Clinical evaluation and resting state fMRI analysis of virtual reality based training in Parkinson's disease through a randomized controlled trial. Sci Rep. 2022;12(1):8024. doi:10.1038/s41598-022-12061-3.
-
30. Marques-Sule E, Arnal-Gómez A, Buitrago-Jiménez G, Suso-Martí L, Cuenca-Martínez F, Espí-López GV. Effectiveness of Nintendo Wii and physical therapy in functionality, balance, and daily activities in chronic stroke patients. J Am Med Dir Assoc. 2021;22(5):1073-80. doi:10.1016/j.jamda.2021.01.076.
-
31. Molhemi F, Monjezi S, Mehravar M, Shaterzadeh-Yazdi MJ, Salehi R, Hesam S, et al. Effects of virtual reality vs conventional balance training on balance and falls in people with multiple sclerosis: a randomized controlled trial. Arch Phys Med Rehabil. 2021;102(2):290-9. doi:10.1016/j.apmr.2020.09.395.
The Use and Effects of Virtual Reality in Neurological Rehabilitation
Year 2026,
Volume: 16 Issue: 1, 188 - 192, 23.01.2026
Gönül Ertunç Gülçelik
,
Gamze Aydoğan
,
Rabia Terzi
,
Ömer Sayma
Abstract
Neurological rehabilitation is a complex process carried out with a multidisciplinary approach to manage and improve the functional losses resulting from neurological diseases or traumas. Neurological rehabilitation includes therapeutic methods applied to improve individuals' quality of life, restore their independence and maximize their activities of daily living. Traditional rehabilitation techniques are aimed at improving the motor, sensory, cognitive and psychosocial functions of patients, but with the increase in technological developments in recent years, the potential of virtual reality technologies in neurological rehabilitation has gradually increased, which has advantages such as its use in many areas such as education, application and evaluation. Virtual reality, by providing real-time visual feedback, enhances patients' active participation in the rehabilitation process and supports traditional rehabilitation methods. These technologies contribute to the neuroplasticity process of neurological patients, helping to improve motor and cognitive functions, and thereby aim to minimize functional losses and improve quality of life. This review aims to examine the role and impact of virtual reality applications in neurological rehabilitation. However, more up-to-date and evidence-based scientific research is needed to understand virtual reality technologies in neurological rehabilitation' effectiveness better.
References
-
1. Dumurgier J, Tzourio C. Epidemiology of neurological diseases in older adults. Rev Neurol (Paris). 2020;176(9):642-8. doi:10.1016/j.neurol.2020.01.356.
-
2. Kum R, Pehlivan E. Farklı fizyoterapi ve rehabilitasyon alanlarında telerehabilitasyon. Bandırma Onyedi Eylül Üniv Sağlık Bilim Araşt Derg. 2022;4(2):166-80. doi:10.46413/boneyusbad.1077637.
-
3. Yavuzarslan M, Demirkol D, Gülseçen S. Sanal gerçeklik teknolojilerinin inme geçiren hastaların rehabilitasyonundaki rolüne ilişkin bir literatür taraması. J Inf Syst Manag Res. 2020;2(1):42-9.
-
4. McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. JAMA. 2021;325(8):765-79. doi:10.1001/jama.2020.26858.
-
5. Hauser SL, Cree BA. Treatment of multiple sclerosis: a review. Am J Med. 2020;133(12):1380-90. doi:10.1016/j.amjmed.2020.05.049.
-
6. Cree BA, Arnold DL, Chataway J, Chitnis T, Fox RJ, Pozo Ramajo A, et al. Secondary progressive multiple sclerosis: new insights. Neurology. 2021;97(8):378-88. doi:10.1212/WNL.0000000000012323.
-
7. Yıldız A, Mustafaoğlu R, Kesiktaş FN. Spinal kord yaralanması olan hastalarda fiziksel engelliler için fiziksel aktivite ölçeği’nin (fefa) geçerlik ve güvenilirliği. Sakarya Univ Holist Sağlık Derg. 2024;6(3):450-63. doi:10.54803/sauhsd.1322366.
-
8. Calderone A, Cardile D, Gangemi A, De Luca R, Quartarone A, Corallo F, et al. Traumatic brain injury and neuromodulation techniques in rehabilitation: a scoping review. Biomedicines. 2024;12(2):438. doi:10.3390/biomedicines12020438.
-
9. Alashram AR. Virtual reality for upper limb rehabilitation in traumatic brain injury: a systematic review. Curr Phys Med Rehabil Rep. 2024;12:343-352. doi:10.1007/s40141-024-00455-5.
-
10. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548-60. doi:10.1001/jama.2019.22360.
-
11. Çapın TK. Sanal ve artırılmış gerçekliğin ortopedi ve travmatolojide uygulama alanları. Türk Ortoped Travmatol Birl Dern. 2024;23(1):66-72. doi:10.5578/totbid.dergisi.2024.11.
-
12. Fidancıoğlu NA, Kocamaz D, Yılmaz RC, Bayramlar K. Kanser rehabilitasyonunda kanıta dayalı teknolojik uygulamaların durumu ve öneriler: derleme makalesi. Türk Sağlık Bilim Araşt Derg. 2024;7(1):1-11. doi:10.51536/tusbad.1316859.
-
13. İldiz MK, Ağce ZB. Tam katılımlı sanal gerçekliğin rehabilitasyondaki kullanımının incelenmesi. Atlas J Med. 2022;1(3):19-29. doi:10.54270/atljm.2022.13.
-
14. Georgiev DD, Georgieva I, Gong Z, Nanjappan V. Georgiev GV. Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sci. 2021;11(2):221. doi:10.3390/brainsci11020221.
-
15. Akbaş RN. Vestibüler rehabilitasyonda sanal gerçeklik teknolojisi. İstanbul Gelişim Üniv Sağlık Bilim Derg. 2021;(15):639-45. doi:10.38079/igusabder.999714.
-
16. Riva G, Mancuso V, Cavedoni S, Stramba-Badiale C. Virtual reality in neurorehabilitation: a review of its effects on multiple cognitive domains. Expert Rev Med Devices. 2020;17(10):1035-61. doi:10.1080/17434440.2020.1825939.
-
17. Khan A, Podlasek A, Somaa F. Virtual reality in post-stroke neurorehabilitation–a systematic review and meta-analysis. Top Stroke Rehabil. 2023;30(1):53-72. doi:10.1080/10749357.2021.1990468.
-
18. Gülcan K, Güçlü-Gündüz A, Yaşar E, Ar U, Sucullu Karadağ Y, Saygılı F. The effects of augmented and virtual reality gait training on balance and gait in patients with Parkinson's disease. Acta Neurol Belg. 2023;123(5):1917-25. doi:10.1007/s13760-022-02147-0.
-
19. Sultan N, Khushnood K, Qureshi S, Altaf S, Khan MK, Malik AN, et al. Effects of virtual reality training using Xbox Kinect on balance, postural control, and functional independence in subjects with stroke. Games Health J. 2023;12(6):440-4. doi:10.1089/g4h.2022.0193.
-
20. Galperin I, Mirelman A, Schmitz-Hübsch T, Hsieh KL, Regev K, Karni A, et al. Treadmill training with virtual reality to enhance gait and cognitive function among people with multiple sclerosis: a randomized controlled trial. J Neurol. 2023;270(3):1388-401. doi:10.1007/s00415-022-11469-1.
-
21. Akıncı M, Burak M, Yaşar E, Kılıç RT. The effects of robot-assisted gait training and virtual reality on balance and gait in stroke survivors: a randomized controlled trial. Gait Posture. 2023;103:215-22. doi:10.1016/j.gaitpost.2023.05.013.
-
22. Doğan M, Ayvat E, Kılınç M. Telerehabilitation versus virtual reality supported task-oriented circuit therapy on upper limbs and trunk functions in patients with multiple sclerosis: a randomized controlled study. Mult Scler Relat Disord. 2023;71:104558. doi:10.1016/j.msard.2023.104558.
-
23. Goel T, Sharma N, Gehlot A, Srivastav AK. Effectiveness of immersive virtual reality training to improve sitting balance control among individuals with acute and sub-acute paraplegia: A randomized clinical trial. J Spinal Cord Med. 2023;46(6):964-74. doi:10.1080/10790268.2021.2012053.
-
24. Marcos-Antón S, Jardón-Huete A, Oña-Simbaña ED, Blázquez-Fernández A, Martínez-Rolando L, Cano-de-la-Cuerda R. sEMG-controlled forearm bracelet and serious game-based rehabilitation for training manual dexterity in people with multiple sclerosis: a randomised controlled trial. J Neuroeng Rehabil. 2023;20(1):110. doi:10.1186/s12984-023-01233-5.
-
25. Molhemi F, Mehravar M, Monjezi S, Salehi R, Negahban H, Shaterzadeh-Yazdi MJ, et al. Effects of exergaming on cognition, lower limb functional coordination, and stepping time in people with multiple sclerosis: a randomized controlled trial. Disabil Rehabil. 2023;45(8):1343-51. doi:10.1080/09638288.2022.2060332.
-
26. Ali AS, Kumaran DS, Unni A, Sardesai S, Prabhu V, Nirmal P, et al. Effectiveness of an intensive, functional, and gamified rehabilitation program on upper limb function in people with stroke (EnteRtain): a multicenter randomized clinical trial. Neurorehabil Neural Repair. 2024;38(4):243-56. doi:10.1177/15459683231222921.
-
27. Maranesi E, Casoni E, Baldoni R, Barboni I, Rinaldi N, Tramontana B, et al. The effect of non-immersive virtual reality exergames versus traditional physiotherapy in Parkinson’s disease older patients: preliminary results from a randomized-controlled trial. Int J Environ Res Public Health. 2022;19(22):14818. doi:10.3390/ijerph192214818.
-
28. Nair MS, Kulkarni VN, Shyam AK. Combined effect of virtual reality training (VRT) and conventional therapy on sitting balance in patients with spinal cord injury (SCI): randomized control trial. Neurol India. 2022;70(Suppl):S245-50. doi:10.4103/0028-3886.360934.
-
29. Hajebrahimi F, Velioglu HA, Bayraktaroglu Z, Helvaci Yilmaz N, Hanoglu L. Clinical evaluation and resting state fMRI analysis of virtual reality based training in Parkinson's disease through a randomized controlled trial. Sci Rep. 2022;12(1):8024. doi:10.1038/s41598-022-12061-3.
-
30. Marques-Sule E, Arnal-Gómez A, Buitrago-Jiménez G, Suso-Martí L, Cuenca-Martínez F, Espí-López GV. Effectiveness of Nintendo Wii and physical therapy in functionality, balance, and daily activities in chronic stroke patients. J Am Med Dir Assoc. 2021;22(5):1073-80. doi:10.1016/j.jamda.2021.01.076.
-
31. Molhemi F, Monjezi S, Mehravar M, Shaterzadeh-Yazdi MJ, Salehi R, Hesam S, et al. Effects of virtual reality vs conventional balance training on balance and falls in people with multiple sclerosis: a randomized controlled trial. Arch Phys Med Rehabil. 2021;102(2):290-9. doi:10.1016/j.apmr.2020.09.395.