Araştırma Makalesi
BibTex RIS Kaynak Göster

Site Calibration of a Temperature-based Model for Estimating the Global Solar Radiation

Yıl 2022, , 342 - 346, 30.04.2022
https://doi.org/10.16984/saufenbilder.1077449

Öz

In this paper, a commonly used global solar radiation (GSR) model is locally calibrated and tested for Kartepe, Kocaeli station. The coefficients of the model are calibrated for monthly and yearly by performing a regression analysis using the measured temperatures. Regression analysis results for both models provide that correlating the clearness index with the second degree of maximum temperature divided by minimum temperature gives the best accuracy for the selected location. Besides, the estimation results for each month indicate that the monthly calibrated coefficients provide very accurate results in terms of statistical errors. Moreover, yearly calibration of the model gives less accurate predictions. The simple and accurate results by monthly calibrated models using this approach can be used in designing and evaluating solar energy applications in the absence of accurate sunshine data.

Kaynakça

  • [1] IEA (2021), Renewables 2021, IEA, Paris https://www.iea.org/reports/renewables-2021
  • [2] C. Aksoy Tırmıkçı and C. Yavuz, “Determining optimum tilt angles of solar surfaces in Sakarya, Turkey,” Theor Appl Climatol, vol.133, pp.15–22, 2018.
  • [3] A.A. El-Sebaii, F.S. Al-Hazmi, A.A. Al-Ghamdi and S.J. Yaghmour, “Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia,” Applied Energy, vol. 87, no.2, pp.568-576, 2010.
  • [4] S. Janjai, P. Pankaew and J. Laksanaboonsong, “A model for calculating hourly global solar radiation from satellite data in the tropics,” Applied Energy, vol. 86, no. 9, pp. 1450-1457, 2009.
  • [5] Z. Jin, W. Yezheng and Y. Gang, “General formula for estimation of monthly average daily global solar radiation in China,” Energy Conversion and Management, vol. 46, no. 2, pp. 257-268, 2005.
  • [6] M. Li, X. Tang, W. Wu and H. Liu, “General models for estimating daily global solar radiation for different solar radiation zones in mainland China,” Energy Conversion and Management, vol. 70, pp. 139-148, 2013.
  • [7] E. Gasser, et al., “New Temperature-based Models for Predicting Global Solar Radiation,” Applied Energy, vol. 179, pp. 437-450, 2016.
  • [8] G.H. Hargreaves and Z.A. Samani, “Estimating potential evapotranspiration,” Journal of Irrigation and Drainage Engineering, vol.108 (IR3), pp. 223-230, 1982.
  • [9] C.K. Panday and A.K. Katiyar, “Temperature base correlation for the estimation of global solar radiation on horizontal surface,” Int J Energy and Environment, vol. 1, no. 4, pp. 737–4, 2010.
  • [10] J.A. Duffie and W.A. Beckman, “Solar engineering of thermal processes,” 3rd ed. New York: John Wiley & Son, 2006.
  • [11] P.I. Cooper, “The absorption of solar radiation in solar stills,” Solar Energy, vol. 12, no. 3, pp. 333–46, 1969.
  • [12] M. Iqbal, “An introduction to solar radiation,” New York, USA: Academic Press, 1983.
  • [13] G. Kopp, J.L. Lean JL, “A new, lower value of total solar irradiance: evidence and climate significance,” Geophys Res Lett, vol. 38:L01706, 2011.
  • [14] Meteoblue Weather History Download Kartepe, available at https://www.meteoblue.com, accessed on 15.01.2022
Yıl 2022, , 342 - 346, 30.04.2022
https://doi.org/10.16984/saufenbilder.1077449

Öz

Kaynakça

  • [1] IEA (2021), Renewables 2021, IEA, Paris https://www.iea.org/reports/renewables-2021
  • [2] C. Aksoy Tırmıkçı and C. Yavuz, “Determining optimum tilt angles of solar surfaces in Sakarya, Turkey,” Theor Appl Climatol, vol.133, pp.15–22, 2018.
  • [3] A.A. El-Sebaii, F.S. Al-Hazmi, A.A. Al-Ghamdi and S.J. Yaghmour, “Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia,” Applied Energy, vol. 87, no.2, pp.568-576, 2010.
  • [4] S. Janjai, P. Pankaew and J. Laksanaboonsong, “A model for calculating hourly global solar radiation from satellite data in the tropics,” Applied Energy, vol. 86, no. 9, pp. 1450-1457, 2009.
  • [5] Z. Jin, W. Yezheng and Y. Gang, “General formula for estimation of monthly average daily global solar radiation in China,” Energy Conversion and Management, vol. 46, no. 2, pp. 257-268, 2005.
  • [6] M. Li, X. Tang, W. Wu and H. Liu, “General models for estimating daily global solar radiation for different solar radiation zones in mainland China,” Energy Conversion and Management, vol. 70, pp. 139-148, 2013.
  • [7] E. Gasser, et al., “New Temperature-based Models for Predicting Global Solar Radiation,” Applied Energy, vol. 179, pp. 437-450, 2016.
  • [8] G.H. Hargreaves and Z.A. Samani, “Estimating potential evapotranspiration,” Journal of Irrigation and Drainage Engineering, vol.108 (IR3), pp. 223-230, 1982.
  • [9] C.K. Panday and A.K. Katiyar, “Temperature base correlation for the estimation of global solar radiation on horizontal surface,” Int J Energy and Environment, vol. 1, no. 4, pp. 737–4, 2010.
  • [10] J.A. Duffie and W.A. Beckman, “Solar engineering of thermal processes,” 3rd ed. New York: John Wiley & Son, 2006.
  • [11] P.I. Cooper, “The absorption of solar radiation in solar stills,” Solar Energy, vol. 12, no. 3, pp. 333–46, 1969.
  • [12] M. Iqbal, “An introduction to solar radiation,” New York, USA: Academic Press, 1983.
  • [13] G. Kopp, J.L. Lean JL, “A new, lower value of total solar irradiance: evidence and climate significance,” Geophys Res Lett, vol. 38:L01706, 2011.
  • [14] Meteoblue Weather History Download Kartepe, available at https://www.meteoblue.com, accessed on 15.01.2022
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ceyda Aksoy Tırmıkçı 0000-0003-0354-4022

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 22 Şubat 2022
Kabul Tarihi 11 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Aksoy Tırmıkçı, C. (2022). Site Calibration of a Temperature-based Model for Estimating the Global Solar Radiation. Sakarya University Journal of Science, 26(2), 342-346. https://doi.org/10.16984/saufenbilder.1077449
AMA Aksoy Tırmıkçı C. Site Calibration of a Temperature-based Model for Estimating the Global Solar Radiation. SAUJS. Nisan 2022;26(2):342-346. doi:10.16984/saufenbilder.1077449
Chicago Aksoy Tırmıkçı, Ceyda. “Site Calibration of a Temperature-Based Model for Estimating the Global Solar Radiation”. Sakarya University Journal of Science 26, sy. 2 (Nisan 2022): 342-46. https://doi.org/10.16984/saufenbilder.1077449.
EndNote Aksoy Tırmıkçı C (01 Nisan 2022) Site Calibration of a Temperature-based Model for Estimating the Global Solar Radiation. Sakarya University Journal of Science 26 2 342–346.
IEEE C. Aksoy Tırmıkçı, “Site Calibration of a Temperature-based Model for Estimating the Global Solar Radiation”, SAUJS, c. 26, sy. 2, ss. 342–346, 2022, doi: 10.16984/saufenbilder.1077449.
ISNAD Aksoy Tırmıkçı, Ceyda. “Site Calibration of a Temperature-Based Model for Estimating the Global Solar Radiation”. Sakarya University Journal of Science 26/2 (Nisan 2022), 342-346. https://doi.org/10.16984/saufenbilder.1077449.
JAMA Aksoy Tırmıkçı C. Site Calibration of a Temperature-based Model for Estimating the Global Solar Radiation. SAUJS. 2022;26:342–346.
MLA Aksoy Tırmıkçı, Ceyda. “Site Calibration of a Temperature-Based Model for Estimating the Global Solar Radiation”. Sakarya University Journal of Science, c. 26, sy. 2, 2022, ss. 342-6, doi:10.16984/saufenbilder.1077449.
Vancouver Aksoy Tırmıkçı C. Site Calibration of a Temperature-based Model for Estimating the Global Solar Radiation. SAUJS. 2022;26(2):342-6.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.