Ansys deformation end mill explicit dynamics stress and strain
In the study, the end mill made of titanium material and having a unique design with a 4-flute was simulated during the milling of the workpiece with a geometry of a rectangular prism made of aluminum material. Ansys Explicit Dynamics was used in the study. Modeling and simulation of the milling process were made with finite element analysis for the estimation of the strength properties. The end mill is chosen as a titanium alloy, while the milled workpiece is aluminum. All parameters were kept constant and only the depth of cut was examined in three scenarios 3, 6, and 9 mm. The simulations were carried out by taking the spindle speed of 4000 RPM and the feeding rate of 3350 mm/s. One of the conveniences provided by Explicit Dynamics is that it can be solved in very small time intervals, and for this reason, the time step in the analysis is solved by taking 0.001 seconds. While hexahedral mesh is applied to the tool, a tetrahedral mesh is applied to the workpiece. The generated mesh has 8,012 nodes and 17,052 mesh elements. Average deformations for both tool and workpiece are 36.92, 38.10, and 38.29 mm, respectively. Strain also shows a similar trend to the total deformation and the average values for all three scenarios were found to be 2.84 x 10-3, 4.43 x 10-3 and 3.99 x 10-3 mm/mm. Also, the stress values were obtained as 78.23, 76.83, and 77.99 MPa.
Ansys deformation end mill explicit dynamics stress and strain.
Birincil Dil | İngilizce |
---|---|
Konular | Makine Mühendisliği |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 22 Haziran 2023 |
Yayımlanma Tarihi | 30 Haziran 2023 |
Gönderilme Tarihi | 1 Şubat 2023 |
Kabul Tarihi | 6 Mart 2023 |
Yayımlandığı Sayı | Yıl 2023 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.