Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 858 - 864, 25.08.2023
https://doi.org/10.16984/saufenbilder.1266590

Öz

Kaynakça

  • M. Y. Shoeib, K. M. “Thabayneh, assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials,” Journal of Radiation Research and Applied Sciences, vol. 7, no. 2, pp. 174-181, 2014.
  • S. U. Duran, B. Küçükömeroğlu, “Karadeniz teknik üniversitesi kanuni kampüsü’nde bazı ofislerde radon gazı ölçümü ve çevrelerindeki topraklarda radyonüklid seviyeleri,” BE Fen Bilimleri Dergisi, vol. 9, no.1, pp. 68-77, 2020.
  • NNDC [Online]. Available: https://www.nndc.bnl.gov/nudat2/
  • M. E. Kürkçüoğlu, G. Bayraktar, “Süleyman demirel üniversitesi’nde bina içi radon konsantrasyonlarinin nükleer iz dedektörleri kullanilarak belirlenmesi,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 16, no. 2, pp. 167-183, 2012.
  • S. Y. Baş, S. A. Selçuk, “Binalarda radon gazi etkisinin azaltilmasina yönelik alinabilecek önlemler üzerine bir değerlendirme,” 3rd International Symposium on Innovative Approaches in Scientific Studies, Ankara, Turkey, 2019, pp. 207-212.
  • H. Zeeb, F. Shannoun, WHO handbook on indoor radon: a public health perspective. France: World Health Organization, 2009.
  • Y. Örgün, N. Çelebi, “Radyasyon, radon ve toplum sağliği,” TMMOB Jeoloji Mühendisleri Odası, vol. 2016/1, 2016.
  • United States Environmental Protection Agency. (2016). A citizen’s guide to radon [Online]. Available: https://www.epa.gov/sites/default/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf
  • N. Celebi, B. Ataksor, H. Taskın, N. A. Bingoldag, “Indoor radon measurements in Turkey dwellings,” Radiation Protection Dosimetry, vol. 167, no. 4, pp. 1-7, 2014.
  • O. Günay, S. Aközcan, F. Kulalı, “Bina içi radon konsantrasyonlarının belirlenmesi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 13, pp. 91-97, 2018.
  • F. Kulalı, O. Günay, S. Aközcan, “Determination of indoor radon levels at campuses of Üsküdar and Okan universities,” International Journal of Environmental Science and Technology, vol. 16, no. 9, pp. 5281-5284, 2019.
  • O. Günay, S. Aközcan, F. Kulalı, “Measurement of indoor radon concentration and annual effective dose estimation for a university campus in Istanbul,” Arabian Journal of Geosciences, vol. 12, no. 5, pp. 171, 2019.
  • N. Sharmar, H. S. Virk, “Exhalation rate study of radon/thoron in some building materials,” Radiation Measurements, vol. 34, no. 1-6, pp. 467-469, 2001.
  • S. S. Ozan, C. E. Ekinci, “Yapılarda radon fenomeni ve radon-sağlık ilişkisi,” e-Journal of New World Sciences Academy Engineering Sciences, vol. 6, no. 4, pp. 1590-1602, 2011.
  • F. Tufaner, “Doğal radon emisyonunun insan sağliğina etkileri ve alınması gereken tedbirler,” Graduation Project, Dept. Environ. Eng., Yıldız Teknik Univ., İstanbul, 2015.
  • E. Dursun, “Rize ilinde akciğer kanserli bireylerin evlerinde radon gazı ölçümleri ve akciğer kanseri radon gazi ilişkisi,” Master, Dept. Phys., Recep Tayyip Erdoğan Univ., Rize, 2016.
  • C. E. Andersen, Radon-222 exhalation from Danish building materials: H + H Industri A/S results. Roskilde, Denmark: Risø National Laboratory, 1999.
  • B. K. Sahoo, B. K. Sapra, J. J. Gaware, S. D. Kanse, Y. S. Mayya, “A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples,” Science of the Total Environment, vol. 409, no.13, pp. 2635-2641, 2011.
  • M. İçhedef, “Controlled laboratory experiments on radon diffusion coefficient,” Sakarya University Journal of Science, vol. 23, no. 3, pp. 308-312, 2019.
  • B. Ruvira, B. García-Fayos, B. Juste, J. M. Arnal, G. Verdú, “Experimental estimation of the diffusion coefficient in radon barrier materials based on ISO/TS 11665-13:2017,” Radiation Physics and Chemistry, vol. 193, pp. 109993, 2022
  • N. Chauhan, R. P. Chauhan, M. Joshi, T. K. Agarwal, P. Aggarwal, B. K. Sahoo, “Study of indoor radon distribution using measurements and CFD modelling,” Journal of Environmental Radioactivity, vol. 136, pp. 105-111, 2014.

Radon Gas Estimation from Building Materials

Yıl 2023, , 858 - 864, 25.08.2023
https://doi.org/10.16984/saufenbilder.1266590

Öz

Radon gas originating from building materials is generally thought to cause low concentration. Investigation and estimation of radon levels originating from building materials are important in terms of public health due to the use of dense concrete in tunnel form type houses, which is a building type widely used in Turkey, even though a significant part of Turkey is an earthquake zone. In this article, the effects of different parameters such as 238U concentration in building materials, diffusion constant of building elements, emanation rate, and ventilation rate on radon gas concentration are investigated. As a result, it is concluded that in some cases (such as high diffusion coefficient and insufficient ventilation rate) in houses built with tunnel form concrete structures, the radon level arising from building materials can reach a level that cannot be neglected.

Kaynakça

  • M. Y. Shoeib, K. M. “Thabayneh, assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials,” Journal of Radiation Research and Applied Sciences, vol. 7, no. 2, pp. 174-181, 2014.
  • S. U. Duran, B. Küçükömeroğlu, “Karadeniz teknik üniversitesi kanuni kampüsü’nde bazı ofislerde radon gazı ölçümü ve çevrelerindeki topraklarda radyonüklid seviyeleri,” BE Fen Bilimleri Dergisi, vol. 9, no.1, pp. 68-77, 2020.
  • NNDC [Online]. Available: https://www.nndc.bnl.gov/nudat2/
  • M. E. Kürkçüoğlu, G. Bayraktar, “Süleyman demirel üniversitesi’nde bina içi radon konsantrasyonlarinin nükleer iz dedektörleri kullanilarak belirlenmesi,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 16, no. 2, pp. 167-183, 2012.
  • S. Y. Baş, S. A. Selçuk, “Binalarda radon gazi etkisinin azaltilmasina yönelik alinabilecek önlemler üzerine bir değerlendirme,” 3rd International Symposium on Innovative Approaches in Scientific Studies, Ankara, Turkey, 2019, pp. 207-212.
  • H. Zeeb, F. Shannoun, WHO handbook on indoor radon: a public health perspective. France: World Health Organization, 2009.
  • Y. Örgün, N. Çelebi, “Radyasyon, radon ve toplum sağliği,” TMMOB Jeoloji Mühendisleri Odası, vol. 2016/1, 2016.
  • United States Environmental Protection Agency. (2016). A citizen’s guide to radon [Online]. Available: https://www.epa.gov/sites/default/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf
  • N. Celebi, B. Ataksor, H. Taskın, N. A. Bingoldag, “Indoor radon measurements in Turkey dwellings,” Radiation Protection Dosimetry, vol. 167, no. 4, pp. 1-7, 2014.
  • O. Günay, S. Aközcan, F. Kulalı, “Bina içi radon konsantrasyonlarının belirlenmesi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 13, pp. 91-97, 2018.
  • F. Kulalı, O. Günay, S. Aközcan, “Determination of indoor radon levels at campuses of Üsküdar and Okan universities,” International Journal of Environmental Science and Technology, vol. 16, no. 9, pp. 5281-5284, 2019.
  • O. Günay, S. Aközcan, F. Kulalı, “Measurement of indoor radon concentration and annual effective dose estimation for a university campus in Istanbul,” Arabian Journal of Geosciences, vol. 12, no. 5, pp. 171, 2019.
  • N. Sharmar, H. S. Virk, “Exhalation rate study of radon/thoron in some building materials,” Radiation Measurements, vol. 34, no. 1-6, pp. 467-469, 2001.
  • S. S. Ozan, C. E. Ekinci, “Yapılarda radon fenomeni ve radon-sağlık ilişkisi,” e-Journal of New World Sciences Academy Engineering Sciences, vol. 6, no. 4, pp. 1590-1602, 2011.
  • F. Tufaner, “Doğal radon emisyonunun insan sağliğina etkileri ve alınması gereken tedbirler,” Graduation Project, Dept. Environ. Eng., Yıldız Teknik Univ., İstanbul, 2015.
  • E. Dursun, “Rize ilinde akciğer kanserli bireylerin evlerinde radon gazı ölçümleri ve akciğer kanseri radon gazi ilişkisi,” Master, Dept. Phys., Recep Tayyip Erdoğan Univ., Rize, 2016.
  • C. E. Andersen, Radon-222 exhalation from Danish building materials: H + H Industri A/S results. Roskilde, Denmark: Risø National Laboratory, 1999.
  • B. K. Sahoo, B. K. Sapra, J. J. Gaware, S. D. Kanse, Y. S. Mayya, “A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples,” Science of the Total Environment, vol. 409, no.13, pp. 2635-2641, 2011.
  • M. İçhedef, “Controlled laboratory experiments on radon diffusion coefficient,” Sakarya University Journal of Science, vol. 23, no. 3, pp. 308-312, 2019.
  • B. Ruvira, B. García-Fayos, B. Juste, J. M. Arnal, G. Verdú, “Experimental estimation of the diffusion coefficient in radon barrier materials based on ISO/TS 11665-13:2017,” Radiation Physics and Chemistry, vol. 193, pp. 109993, 2022
  • N. Chauhan, R. P. Chauhan, M. Joshi, T. K. Agarwal, P. Aggarwal, B. K. Sahoo, “Study of indoor radon distribution using measurements and CFD modelling,” Journal of Environmental Radioactivity, vol. 136, pp. 105-111, 2014.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Araştırma Makalesi
Yazarlar

Safa Başdemir Bu kişi benim 0009-0009-3599-5785

Caner Yalçın 0000-0002-3105-7267

Erken Görünüm Tarihi 19 Ağustos 2023
Yayımlanma Tarihi 25 Ağustos 2023
Gönderilme Tarihi 16 Mart 2023
Kabul Tarihi 12 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Başdemir, S., & Yalçın, C. (2023). Radon Gas Estimation from Building Materials. Sakarya University Journal of Science, 27(4), 858-864. https://doi.org/10.16984/saufenbilder.1266590
AMA Başdemir S, Yalçın C. Radon Gas Estimation from Building Materials. SAUJS. Ağustos 2023;27(4):858-864. doi:10.16984/saufenbilder.1266590
Chicago Başdemir, Safa, ve Caner Yalçın. “Radon Gas Estimation from Building Materials”. Sakarya University Journal of Science 27, sy. 4 (Ağustos 2023): 858-64. https://doi.org/10.16984/saufenbilder.1266590.
EndNote Başdemir S, Yalçın C (01 Ağustos 2023) Radon Gas Estimation from Building Materials. Sakarya University Journal of Science 27 4 858–864.
IEEE S. Başdemir ve C. Yalçın, “Radon Gas Estimation from Building Materials”, SAUJS, c. 27, sy. 4, ss. 858–864, 2023, doi: 10.16984/saufenbilder.1266590.
ISNAD Başdemir, Safa - Yalçın, Caner. “Radon Gas Estimation from Building Materials”. Sakarya University Journal of Science 27/4 (Ağustos 2023), 858-864. https://doi.org/10.16984/saufenbilder.1266590.
JAMA Başdemir S, Yalçın C. Radon Gas Estimation from Building Materials. SAUJS. 2023;27:858–864.
MLA Başdemir, Safa ve Caner Yalçın. “Radon Gas Estimation from Building Materials”. Sakarya University Journal of Science, c. 27, sy. 4, 2023, ss. 858-64, doi:10.16984/saufenbilder.1266590.
Vancouver Başdemir S, Yalçın C. Radon Gas Estimation from Building Materials. SAUJS. 2023;27(4):858-64.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.