Araştırma Makalesi
BibTex RIS Kaynak Göster

Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models

Yıl 2016, , 1 - 6, 01.04.2016
https://doi.org/10.16984/saufenbilder.00295

Öz

This paper proposes some methods of robust text-independent speaker identification based on Gaussian Mixture Model (GMM). We implemented a combination of GMM model with a set of classifiers such as Support Vector Machine (SVM), K-Nearest Neighbour (K-NN), and Naive Bayes Classifier (NBC). In order to improve the identification rate, we developed a combination of hybrid systems by using validation technique. The experiments were performed on the dialect DR1 of the TIMIT corpus. The results have showed a better performance for the developed technique compared to the individual techniques.

Kaynakça

  • D. A. N. R.Amami, “An Empirical Comparison
  • of SVM and Some Supervised Learning
  • Algorithms for Vowel recognition”,
  • International Journal of Intelligent Information
  • Processing IJIIP, 2012.
  • B.S. Atal, “Automatic Recognition of Speaker
  • from Their Voices”, Proceedings of the IEEE,
  • Vol. 64, No. 4, pp 460-475, 1976
  • W. M. Campbell, D. E. Sturim, D. A. Reynolds,
  • and A. Solomon off, “SVM based speaker
  • verification using a GMM supervector kernel and
  • Without modelling GMM
  • Classifiers SVM K-NN NB
  • Identification rate
  • (%)
  • 87 92
  • Y. Nahayo, S. Arı Performance of svm, k-nn and nbc classifiers for text
  • independent speaker identification with and without
  • modelling through merging models
  • SAÜ Fen Bil Der 20. Cilt, 1. Sayı, s. 1-6, 2016
  • NAP variability compensation”, Proc. Int. Conf.
  • Acoustics, Speech, and Signal Processing, 2006.
  • D. Reynolds and R. Rose, "Robust textindependent speaker identification using
  • Gaussian mixture speaker models, " IEEE Trans.
  • Speech Audio Proc., vol. 3, no. 1, pp. 72–83,
  • -
  • D. Ben Ayed Mezghani, S. Zribi Boujelbene et
  • N. Ellouze, "Evaluation of SVM kernels function
  • and conventional machine learning algorithms
  • for Speaker Identification Task," International
  • Journal of Hybrid Information Technology
  • (IJHIT), vol. 3, pp. 2 3-34, 2010.
  • S. Zribi Boujelbene, D. Ben Ayed Mezghan et N.
  • Ellouze, "Application of Combining Classifiers
  • for Text-Independent Speaker Identification,"
  • the 16th IEEE International Conference on
  • Electronics, Circuits, and Systems ICECS,
  • Hammamet-Tunisie, pp. 723-726, 2009.
  • R. Djemili, M. Bedda and H. Bourouba, "A
  • Hybrid GMM/SVM System for Text
  • Independent Speaker Identification,"
  • International Journal of Computer and
  • Information Science and Engineering, vol. 1, pp.
  • -8, 2007.
  • D. Neiberg “Text Independent Speaker
  • Verification Using Adapted Gaussian Mixture
  • Models", Centre for Speech Technology (CTT)
  • Department of Speech, Music and Hearing KTH,
  • Stockholm, Sweden 2001-12-11.
  • S. Zribi Boujelbene, D. Ben Ayed Mezghan et N.
  • Ellouze, “Support Vector Machines approaches
  • and its application to speaker identification," 3rd
  • IEEE International Conference on Digital
  • Ecosystems and Technologies DEST, pp. 662-
  • , 2009.
  • I. Ayed, “Stratégies de fusion de paramètres pour
  • une tâche d'identification du locuteur en mode
  • indépendant du texte : Application sur le corpus
  • NTIMIT.TAIMA”, Hammamet-Tunisie 2011.
  • L. Lam et C.Y. Suen. “Application of Majority
  • Voting to Pattern Recognition: An Analysis of Its
  • Behavior and Performance”, IEEE Transactions
  • on Systems, Man Cybernetics, pp. 553-568,
  • -
  • K. S. Durgesh, and B. Lekha, “Data classification
  • using support vector machine.” Journal of
  • Theoretical and Applied Information
  • Technology, 12(1), 1-7, 2010
  • H. Y. Chang, A. L. Kong, and L. Haizhou, “An
  • SVM Kernel With GMM-Supervector Based on
  • the Bhattacharyya Distance for Speaker
  • Recognition”, v.6, pp. 1300-1312, 2010

Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı

Yıl 2016, , 1 - 6, 01.04.2016
https://doi.org/10.16984/saufenbilder.00295

Öz

Bu çalışma Gaussian Mixture Model tabanlı metin-bağımsız konuşmacı tanıma yöntemleri sunar. GMM model ile Support Vector Machine, K-nearest Neighbour ve Naive Bayes sınıflandırıcı gibi sınıflandırıcıların kombinasyonu gerçekleştirilmiştir. Tanıma oranını iyileştirmek için, doğrulama yöntemi kullanarak hibrid sistemlerin kombinasyonunu geliştirdik. Deneyler TIMIT corpus’ un DR1 lehçesi üzerine yapılmıştır. Sonuçlar ayrı ayrı yöntemlerle karılaştırıldığında geliştirilen yöntemle daha iyi başarım göstermiştir.

Kaynakça

  • D. A. N. R.Amami, “An Empirical Comparison
  • of SVM and Some Supervised Learning
  • Algorithms for Vowel recognition”,
  • International Journal of Intelligent Information
  • Processing IJIIP, 2012.
  • B.S. Atal, “Automatic Recognition of Speaker
  • from Their Voices”, Proceedings of the IEEE,
  • Vol. 64, No. 4, pp 460-475, 1976
  • W. M. Campbell, D. E. Sturim, D. A. Reynolds,
  • and A. Solomon off, “SVM based speaker
  • verification using a GMM supervector kernel and
  • Without modelling GMM
  • Classifiers SVM K-NN NB
  • Identification rate
  • (%)
  • 87 92
  • Y. Nahayo, S. Arı Performance of svm, k-nn and nbc classifiers for text
  • independent speaker identification with and without
  • modelling through merging models
  • SAÜ Fen Bil Der 20. Cilt, 1. Sayı, s. 1-6, 2016
  • NAP variability compensation”, Proc. Int. Conf.
  • Acoustics, Speech, and Signal Processing, 2006.
  • D. Reynolds and R. Rose, "Robust textindependent speaker identification using
  • Gaussian mixture speaker models, " IEEE Trans.
  • Speech Audio Proc., vol. 3, no. 1, pp. 72–83,
  • -
  • D. Ben Ayed Mezghani, S. Zribi Boujelbene et
  • N. Ellouze, "Evaluation of SVM kernels function
  • and conventional machine learning algorithms
  • for Speaker Identification Task," International
  • Journal of Hybrid Information Technology
  • (IJHIT), vol. 3, pp. 2 3-34, 2010.
  • S. Zribi Boujelbene, D. Ben Ayed Mezghan et N.
  • Ellouze, "Application of Combining Classifiers
  • for Text-Independent Speaker Identification,"
  • the 16th IEEE International Conference on
  • Electronics, Circuits, and Systems ICECS,
  • Hammamet-Tunisie, pp. 723-726, 2009.
  • R. Djemili, M. Bedda and H. Bourouba, "A
  • Hybrid GMM/SVM System for Text
  • Independent Speaker Identification,"
  • International Journal of Computer and
  • Information Science and Engineering, vol. 1, pp.
  • -8, 2007.
  • D. Neiberg “Text Independent Speaker
  • Verification Using Adapted Gaussian Mixture
  • Models", Centre for Speech Technology (CTT)
  • Department of Speech, Music and Hearing KTH,
  • Stockholm, Sweden 2001-12-11.
  • S. Zribi Boujelbene, D. Ben Ayed Mezghan et N.
  • Ellouze, “Support Vector Machines approaches
  • and its application to speaker identification," 3rd
  • IEEE International Conference on Digital
  • Ecosystems and Technologies DEST, pp. 662-
  • , 2009.
  • I. Ayed, “Stratégies de fusion de paramètres pour
  • une tâche d'identification du locuteur en mode
  • indépendant du texte : Application sur le corpus
  • NTIMIT.TAIMA”, Hammamet-Tunisie 2011.
  • L. Lam et C.Y. Suen. “Application of Majority
  • Voting to Pattern Recognition: An Analysis of Its
  • Behavior and Performance”, IEEE Transactions
  • on Systems, Man Cybernetics, pp. 553-568,
  • -
  • K. S. Durgesh, and B. Lekha, “Data classification
  • using support vector machine.” Journal of
  • Theoretical and Applied Information
  • Technology, 12(1), 1-7, 2010
  • H. Y. Chang, A. L. Kong, and L. Haizhou, “An
  • SVM Kernel With GMM-Supervector Based on
  • the Bhattacharyya Distance for Speaker
  • Recognition”, v.6, pp. 1300-1312, 2010
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Yussouf Nahayo Bu kişi benim

Seçkin Arı

Yayımlanma Tarihi 1 Nisan 2016
Gönderilme Tarihi 23 Nisan 2015
Kabul Tarihi 26 Ağustos 2015
Yayımlandığı Sayı Yıl 2016

Kaynak Göster

APA Nahayo, Y., & Arı, S. (2016). Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. Sakarya University Journal of Science, 20(1), 1-6. https://doi.org/10.16984/saufenbilder.00295
AMA Nahayo Y, Arı S. Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. SAUJS. Mart 2016;20(1):1-6. doi:10.16984/saufenbilder.00295
Chicago Nahayo, Yussouf, ve Seçkin Arı. “Performance of Svm, K-Nn and Nbc Classifiers for Text-Independent Speaker Identification With and Without Modelling through Merging Models”. Sakarya University Journal of Science 20, sy. 1 (Mart 2016): 1-6. https://doi.org/10.16984/saufenbilder.00295.
EndNote Nahayo Y, Arı S (01 Mart 2016) Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. Sakarya University Journal of Science 20 1 1–6.
IEEE Y. Nahayo ve S. Arı, “Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models”, SAUJS, c. 20, sy. 1, ss. 1–6, 2016, doi: 10.16984/saufenbilder.00295.
ISNAD Nahayo, Yussouf - Arı, Seçkin. “Performance of Svm, K-Nn and Nbc Classifiers for Text-Independent Speaker Identification With and Without Modelling through Merging Models”. Sakarya University Journal of Science 20/1 (Mart 2016), 1-6. https://doi.org/10.16984/saufenbilder.00295.
JAMA Nahayo Y, Arı S. Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. SAUJS. 2016;20:1–6.
MLA Nahayo, Yussouf ve Seçkin Arı. “Performance of Svm, K-Nn and Nbc Classifiers for Text-Independent Speaker Identification With and Without Modelling through Merging Models”. Sakarya University Journal of Science, c. 20, sy. 1, 2016, ss. 1-6, doi:10.16984/saufenbilder.00295.
Vancouver Nahayo Y, Arı S. Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. SAUJS. 2016;20(1):1-6.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.