Research Article
BibTex RIS Cite

Analysis of ejector expansion refrigeration cycle with two phase flow ejector

Year 2017, , 1591 - 1607, 01.12.2017
https://doi.org/10.16984/saufenbilder.290819

Abstract

The aim of
this study is to determine the operational characteristics of an ejector
expansion refrigeration cycle (EERC) working with refrigerant R134a. A
constant-area two phase flow ejector at critical mode is modeled to determine
the effect of condenser pressure (Pcond) and evaporator pressure (Pevap)
on the performance parameters of EERC: ejector expansion factor (EEF) and
coefficient of performance (COP). Additionally, since it is possible to use the
EERC for different cooling requirements, variation of COP and EEF with is also investigated. For this purpose, a simulation program
is developed using EES software.  The
two-phase/compressible fluid flow in the ejector is analyzed accounting for
real gas behavior of the refrigerant. Extensive details of mathematical
modeling and applied computational procedure are also presented in the study.

References

  • [1] J. Sarkar, "Geometric parameter optimization of ejector expansion refrigeration cycle with natural refrigerants," Int. J. Energy Res., vol. 34, pp. 84-94, 2010.
  • [2] N. Lawrence and S. Elbel, "Experimental and analytical investigation of automotive ejector air conditioning cycles using low-pressure refrigerants," in Proceedings of Int. Air Conditioning and Refrigeration Conference, Purdue, West Lafayette, USA, 2012.
  • [3] S. Gurulingam, A. Kalaisselvane and N. Alagumurthy, "Performance Improvement of Forced Draught Jet Ejector Using Constant Rate Momentum Change Method," International Journal of Engineering and Advanced Technology, vol. 2, pp. 149-153, 2012.
  • [4] D. Li, "Investigation of An Ejector-Expansion Device in A Transcritical Carbon Dioxide Cycle For Military Ecu Applications," West Lafayette, Indiana, USA, 2006.
  • [5] B. J. Huang, J. M. Chang, C. P. Wang and V. A. Petrenko, "A 1-D analysis of ejector performance," Int. J. Refrig., vol. 22, pp. 354-364, 1999.
  • [6] W. Chen, M. Liu, D. Chong, J. Yan, A. B. Little and Y. Bartosiewicz, "A 1D model to predict ejector performance at critical and sub-critical operational regimes," International Journal of Refrigeration, vol. 36, pp. 1750-1761, 2013.
  • [7] L. Boumara and L. André, "Modeling of an ejector refrigerating system operating in dimensioning and off-dimensioning conditions with the working fluids R142b and R600a," Applied Thermal Engineering, vol. 29, p. 265–274, 2009.
  • [8] B. J. Huang and J. M. Chang, "Empirical correlation for ejector design," International Journal of Refrigeration, vol. 22, p. 379–388, 1999.
  • [9] J. T. Munday and D. F. Bagster, "A new ejector theory applied to steam jet refrigeration," Ind. Engng Chem. Process Des. Dev., vol. 16, p. 442–449, 1977.
  • [10] I. W. Eames, S. Aphornratana and H. Haider, "A theoretical and experimental study of a small-scale steam jet refrigerator," International Journal of Refrigeration, vol. 18, p. 378–386, 1995.

İki fazlı ejektör kullanan ejektörlü soğutma çevriminin analizi

Year 2017, , 1591 - 1607, 01.12.2017
https://doi.org/10.16984/saufenbilder.290819

Abstract

Bu
çalışmanın amacı, R134a soğutucu akışkan ile çalışan bir ejektör genleşme
soğutma çevriminin (EERC) çalışma karakteristiklerinin belirlenmesidir. Kritik
modda çalışan, iki fazlı ve sabit alanlı bir ejektör, yoğuşturucu basıncı (Pcond)
ve buharlaştırıcı basıncının (Pevap), ejektör genleşme faktörü (EEF)
ve performans katsayısı (COP) üzerindeki etkilerinin belirlenmesi için
modellenmiştir. EERC'nin farklı soğutma yükü ihtiyaçlarında kullanılması mümkün
olduğundan, COP ve EEF'’nin soğutma kapasitesi ()'ne bağlı değişimleri de incelenmiştir. Bu amaçla, EES
programı kullanılarak bir simülasyon programı geliştirilmiştir. Ejektör
içindeki iki fazlı/sıkıştırılabilir akış modellenirken soğutucunun gerçek gaz
davranışı hesaba katılmıştır. Geliştirilen matematiksel model ve hesaplama
prosedürü detayları ile sunulmuştur. 

References

  • [1] J. Sarkar, "Geometric parameter optimization of ejector expansion refrigeration cycle with natural refrigerants," Int. J. Energy Res., vol. 34, pp. 84-94, 2010.
  • [2] N. Lawrence and S. Elbel, "Experimental and analytical investigation of automotive ejector air conditioning cycles using low-pressure refrigerants," in Proceedings of Int. Air Conditioning and Refrigeration Conference, Purdue, West Lafayette, USA, 2012.
  • [3] S. Gurulingam, A. Kalaisselvane and N. Alagumurthy, "Performance Improvement of Forced Draught Jet Ejector Using Constant Rate Momentum Change Method," International Journal of Engineering and Advanced Technology, vol. 2, pp. 149-153, 2012.
  • [4] D. Li, "Investigation of An Ejector-Expansion Device in A Transcritical Carbon Dioxide Cycle For Military Ecu Applications," West Lafayette, Indiana, USA, 2006.
  • [5] B. J. Huang, J. M. Chang, C. P. Wang and V. A. Petrenko, "A 1-D analysis of ejector performance," Int. J. Refrig., vol. 22, pp. 354-364, 1999.
  • [6] W. Chen, M. Liu, D. Chong, J. Yan, A. B. Little and Y. Bartosiewicz, "A 1D model to predict ejector performance at critical and sub-critical operational regimes," International Journal of Refrigeration, vol. 36, pp. 1750-1761, 2013.
  • [7] L. Boumara and L. André, "Modeling of an ejector refrigerating system operating in dimensioning and off-dimensioning conditions with the working fluids R142b and R600a," Applied Thermal Engineering, vol. 29, p. 265–274, 2009.
  • [8] B. J. Huang and J. M. Chang, "Empirical correlation for ejector design," International Journal of Refrigeration, vol. 22, p. 379–388, 1999.
  • [9] J. T. Munday and D. F. Bagster, "A new ejector theory applied to steam jet refrigeration," Ind. Engng Chem. Process Des. Dev., vol. 16, p. 442–449, 1977.
  • [10] I. W. Eames, S. Aphornratana and H. Haider, "A theoretical and experimental study of a small-scale steam jet refrigerator," International Journal of Refrigeration, vol. 18, p. 378–386, 1995.
There are 10 citations in total.

Details

Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Candeniz Seçkin

Publication Date December 1, 2017
Submission Date February 8, 2017
Acceptance Date October 31, 2017
Published in Issue Year 2017

Cite

APA Seçkin, C. (2017). Analysis of ejector expansion refrigeration cycle with two phase flow ejector. Sakarya University Journal of Science, 21(6), 1591-1607. https://doi.org/10.16984/saufenbilder.290819
AMA Seçkin C. Analysis of ejector expansion refrigeration cycle with two phase flow ejector. SAUJS. December 2017;21(6):1591-1607. doi:10.16984/saufenbilder.290819
Chicago Seçkin, Candeniz. “Analysis of Ejector Expansion Refrigeration Cycle With Two Phase Flow Ejector”. Sakarya University Journal of Science 21, no. 6 (December 2017): 1591-1607. https://doi.org/10.16984/saufenbilder.290819.
EndNote Seçkin C (December 1, 2017) Analysis of ejector expansion refrigeration cycle with two phase flow ejector. Sakarya University Journal of Science 21 6 1591–1607.
IEEE C. Seçkin, “Analysis of ejector expansion refrigeration cycle with two phase flow ejector”, SAUJS, vol. 21, no. 6, pp. 1591–1607, 2017, doi: 10.16984/saufenbilder.290819.
ISNAD Seçkin, Candeniz. “Analysis of Ejector Expansion Refrigeration Cycle With Two Phase Flow Ejector”. Sakarya University Journal of Science 21/6 (December 2017), 1591-1607. https://doi.org/10.16984/saufenbilder.290819.
JAMA Seçkin C. Analysis of ejector expansion refrigeration cycle with two phase flow ejector. SAUJS. 2017;21:1591–1607.
MLA Seçkin, Candeniz. “Analysis of Ejector Expansion Refrigeration Cycle With Two Phase Flow Ejector”. Sakarya University Journal of Science, vol. 21, no. 6, 2017, pp. 1591-07, doi:10.16984/saufenbilder.290819.
Vancouver Seçkin C. Analysis of ejector expansion refrigeration cycle with two phase flow ejector. SAUJS. 2017;21(6):1591-607.