Research Article
BibTex RIS Cite

Theoretical Study of Thermal Conductivities of n- and p-type Doped Mg2Si1-xSnx Thermoelectric Solid Solutions

Year 2017, , 1221 - 1228, 01.12.2017
https://doi.org/10.16984/saufenbilder.292752

Abstract

Mg2Si1-xSnx
solid solutions are a promising class of thermoelectric materials due to
their high thermoelectric efficiencies
at
intermediate temperature range from 500 K to 800 K. Present study presents a theoretical
work of the   thermal
conductivities of both n- and
p-type doped Mg2Si1-xSnx solid solutions. The
thermal conductivity contributions arising from carriers (electrons or holes),
electron-hole pairs, and phonons are taken into account separately by employing
the Wiedemann-Franz law, Price's theory, and Debye's isotropic continuum model,
respectively. All phonon scattering mechanisms originate from crystal
boundaries, mass-defects, deformation potentials, and anharmonicity are
investigated rigorously for all solid solutions. The lowest total thermal
conductivity values are obtained as 2.431 WK-1m-1 at 700
K for n-type doped Mg2(Si0.4Sn0.6)0.98Bi0.02
solid solution and 1.843 WK-1m-1 at 600 K for
p-type doped Mg2(Si0.3Sn0.7)0.95Ga0.05
solid solution which clearly suggest that p-type doped Mg2Si1-xSnx
based solid solutions are better candidates for the thermoelectric
devices than their n-type doped solid solutions.

References

  • V. K. Zaitsev, M. I. Fedorov, I. S. Eremin, E. A. Gurieva, and D. M. Rowe, ‘Thermoelectrics handbook: macro to nano’, CRC Press. Taylor Fr. Boca Rat., 2006.
  • C. Li, Y. Wu, H. Li, and X. Liu, ‘Microstructural formation in hypereutectic Al-Mg2Si with extra Si’, J. Alloys Compd., vol. 477, no. 1, pp. 212–216, 2009.
  • P. M. Lee, ‘Electronic structure of magnesium silicide and magnesium germanide’, Phys. Rev., vol. 135, no. 4A, p. A1110, 1964.
  • S. K. Bux, M. T. Yeung, E. S. Toberer, G. J. Snyder, R. B. Kaner, and J.-P. Fleurial, ‘Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide’, J. Mater. Chem., vol. 21, no. 33, pp. 12259– 12266, 2011.
  • V. K. Zaitsev et al., ‘Highly effective Mg2Si1- xSnx thermoelectrics’, Phys. Rev. B, vol. 74, no. 4, p. 45207, 2006.
  • X. Liu et al., ‘Low electron scattering potentials in high performance Mg2Si0. 45Sn0. 55 based thermoelectric solid solutions with band convergence’, Adv. Energy Mater., vol. 3, no. 9, pp. 1238–1244, 2013.
  • W. Liu et al., ‘High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions’, J. Solid State Chem., vol. 203, pp. 333–339, 2013.
  • T. Dasgupta, C. Stiewe, R. Hassdorf, A. J. Zhou, L. Boettcher, and E. Mueller, ‘Effect of vacancies on the thermoelectric properties of Mg2Si1- xSbx (0 ≤ x ≤ 0.1)’, Phys. Rev. B, vol. 83, no. 23, p. 235207, 2011.
  • J.-Y. Jung, K.-H. Park, and I.-H. Kim, ‘Thermoelectric Properties of Sb-doped Mg2Si Prepared by Solid-State Synthesis’, IOP Conf. Ser. Mater. Sci. Eng., vol. 18, no. 14, p. 142006, 2011.
  • J. Tani and H. Kido, ‘Thermoelectric properties of Sb-doped Mg2Si semiconductors’, Intermetallics, vol. 15, no. 9, pp. 1202–1207, 2007.
  • M. I. Fedorov, V. K. Zaitsev, and G. N. Isachenko, ‘High effective thermoelectrics based on the Mg2Si-Mg2Sn solid solution’, Solid State Phenomena, 2011, vol. 170, pp. 286–292.
  • A. U. Khan, N. Vlachos, and T. Kyratsi, ‘High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb’, Scr. Mater., vol. 69, no. 8, pp. 606–609, 2013.
  • P. J. Price, ‘CXXXV. Ambipolar thermodiffusion of electrons and holes in semiconductors’, London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 46, no. 382, pp. 1252–1260, 1955.
  • G. P. Srivastava, ‘The physics of phonons’, CRC press, 1990.
  • D. M. Rowe, ‘Thermoelectrics handbook: macro to nano’, Thermoelectr. Handb. Macro to Nano, vol. 80, no. 10, p. 1014, 2005.
  • R. R. Heikes and R. W. Ure, ‘Thermoelectricity: science and engineering’, Interscience Publishers, 1961.
  • J. Tani and H. Kido, ‘Thermoelectric properties of Bi-doped Mg2Si semiconductors’, Phys. B Condens. Matter, vol. 364, no. 1, pp. 218–224, 2005.
  • T. Yi et al., ‘Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties’, J. Mater. Chem., vol. 22, no. 47, pp. 24805–24813, 2012.
  • Ö. C. Yelgel and G. P. Srivastava, ‘Thermoelectric properties of n-type Bi2(Te0.85Se0.15)3 single crystals doped with CuBr and SbI3’, Phys. Rev. B, vol. 85, no. 12, p. 125207, 2012.
  • A. H. Wilson, ‘The Theory of Metals Cambridge’, Gt. Britain, p. 26, 1953.
  • J. P. McKelvey, ‘Solid state and semiconductor physics’, 1966.
  • Ö. Ceyda Yelgel and G. P. Srivastava, ‘Thermoelectric properties of p-type (Bi2Te3) x (Sb2Te3)1- x single crystals doped with 3 wt.% Te’, J. Appl. Phys., vol. 113, no. 7, p. 73709, 2013.
  • G. S. Nolas, H. J. Goldsmid, and T. M. Tritt, ‘Thermal Conductivity: Theory, Properties, and Applications’, 2004.
  • M. G. Holland, ‘Phonon scattering in semiconductors from thermal conductivity studies’, Phys. Rev., vol. 134, no. 2A, p. A471, 1964.
  • M. Grundmann, ‘The Physics of Phonons: An Introduction Including Devices and Nanophysics’. Springer, Berlin, 2006.
  • O. Madelung, U. Rössler, and M. Schulz, ‘Non-tetrahedrally bonded elements and binary compounds I’, Landolt-Börnstein Ser., vol. 3, 1998.
  • H. Wang, H. Jin, W. Chu, and Y. Guo, ‘Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method’, J. Alloys Compd., vol. 499, no. 1, pp. 68–74, 2010.

N- ve P-tip Katkılı Mg2Si1-xSnx Katı alaşımlarının termal iletkenliklerinin teorik calışması

Year 2017, , 1221 - 1228, 01.12.2017
https://doi.org/10.16984/saufenbilder.292752

Abstract

Mg2Si1-xSnx katı
alaşımları yüksek termoelektrik verimlilikleri sebebiyle 500 K’den 800 K’e
kadar olan orta sıcaklılık aralığı için umut vaadeden termoelektrik
materyallerdir. Bu çalışmada hem n- hem p-tip katkılı Mg2Si1-xSnx
katı alaşımlarının termal iletkenlikleri teorik olarak detaylıca incelenmesi
sunulmuştur. Taşıyıcılardan (elektronlar yada holler), elektron-hole
çiftlerinden ve fononlardan kaynaklanan termal iletkenlik katkıları ayrı ayrı
göz önüne alınarak ve sırasıyla Wiedeman-Franz kanunu, Price’in teorisi, ve
Debye’nin izotropik sürekli modeli uygulanarak hesaplanmıştır. Bütün fonon
çarpışma mekanizmaları, kaynağı kristal sınırlarından, kütle bozukluklarından,
bozunum potansiyellerinden ve anharmoniklikten olan katı alaşımların hepsi için
eksiksiz bir şekilde incelenmiştir. En düşük toplam termal iletkenlik değerleri
n-tip katkılı Mg2(Si0.4Sn0.6)0.98Bi0.02
katı alaşım için 700 K’de 2.431 WK-1m-1 olarak, p-tip
katkılı Mg2(Si0.3Sn0.7)0.95Ga0.05
katı alaşım için 600 K’de 1.843 WK-1m-1 olarak
bulunmuştur buda açıkca öneriyor ki p-tip katkılı Mg2Si1-xSnx
tabanlı katı alaşımlar n-tip katkılı katı alaşımlarından termoelektrik cihazlar
için daha iyi adaylardır.

References

  • V. K. Zaitsev, M. I. Fedorov, I. S. Eremin, E. A. Gurieva, and D. M. Rowe, ‘Thermoelectrics handbook: macro to nano’, CRC Press. Taylor Fr. Boca Rat., 2006.
  • C. Li, Y. Wu, H. Li, and X. Liu, ‘Microstructural formation in hypereutectic Al-Mg2Si with extra Si’, J. Alloys Compd., vol. 477, no. 1, pp. 212–216, 2009.
  • P. M. Lee, ‘Electronic structure of magnesium silicide and magnesium germanide’, Phys. Rev., vol. 135, no. 4A, p. A1110, 1964.
  • S. K. Bux, M. T. Yeung, E. S. Toberer, G. J. Snyder, R. B. Kaner, and J.-P. Fleurial, ‘Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide’, J. Mater. Chem., vol. 21, no. 33, pp. 12259– 12266, 2011.
  • V. K. Zaitsev et al., ‘Highly effective Mg2Si1- xSnx thermoelectrics’, Phys. Rev. B, vol. 74, no. 4, p. 45207, 2006.
  • X. Liu et al., ‘Low electron scattering potentials in high performance Mg2Si0. 45Sn0. 55 based thermoelectric solid solutions with band convergence’, Adv. Energy Mater., vol. 3, no. 9, pp. 1238–1244, 2013.
  • W. Liu et al., ‘High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions’, J. Solid State Chem., vol. 203, pp. 333–339, 2013.
  • T. Dasgupta, C. Stiewe, R. Hassdorf, A. J. Zhou, L. Boettcher, and E. Mueller, ‘Effect of vacancies on the thermoelectric properties of Mg2Si1- xSbx (0 ≤ x ≤ 0.1)’, Phys. Rev. B, vol. 83, no. 23, p. 235207, 2011.
  • J.-Y. Jung, K.-H. Park, and I.-H. Kim, ‘Thermoelectric Properties of Sb-doped Mg2Si Prepared by Solid-State Synthesis’, IOP Conf. Ser. Mater. Sci. Eng., vol. 18, no. 14, p. 142006, 2011.
  • J. Tani and H. Kido, ‘Thermoelectric properties of Sb-doped Mg2Si semiconductors’, Intermetallics, vol. 15, no. 9, pp. 1202–1207, 2007.
  • M. I. Fedorov, V. K. Zaitsev, and G. N. Isachenko, ‘High effective thermoelectrics based on the Mg2Si-Mg2Sn solid solution’, Solid State Phenomena, 2011, vol. 170, pp. 286–292.
  • A. U. Khan, N. Vlachos, and T. Kyratsi, ‘High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb’, Scr. Mater., vol. 69, no. 8, pp. 606–609, 2013.
  • P. J. Price, ‘CXXXV. Ambipolar thermodiffusion of electrons and holes in semiconductors’, London, Edinburgh, Dublin Philos. Mag. J. Sci., vol. 46, no. 382, pp. 1252–1260, 1955.
  • G. P. Srivastava, ‘The physics of phonons’, CRC press, 1990.
  • D. M. Rowe, ‘Thermoelectrics handbook: macro to nano’, Thermoelectr. Handb. Macro to Nano, vol. 80, no. 10, p. 1014, 2005.
  • R. R. Heikes and R. W. Ure, ‘Thermoelectricity: science and engineering’, Interscience Publishers, 1961.
  • J. Tani and H. Kido, ‘Thermoelectric properties of Bi-doped Mg2Si semiconductors’, Phys. B Condens. Matter, vol. 364, no. 1, pp. 218–224, 2005.
  • T. Yi et al., ‘Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon, and their thermoelectric properties’, J. Mater. Chem., vol. 22, no. 47, pp. 24805–24813, 2012.
  • Ö. C. Yelgel and G. P. Srivastava, ‘Thermoelectric properties of n-type Bi2(Te0.85Se0.15)3 single crystals doped with CuBr and SbI3’, Phys. Rev. B, vol. 85, no. 12, p. 125207, 2012.
  • A. H. Wilson, ‘The Theory of Metals Cambridge’, Gt. Britain, p. 26, 1953.
  • J. P. McKelvey, ‘Solid state and semiconductor physics’, 1966.
  • Ö. Ceyda Yelgel and G. P. Srivastava, ‘Thermoelectric properties of p-type (Bi2Te3) x (Sb2Te3)1- x single crystals doped with 3 wt.% Te’, J. Appl. Phys., vol. 113, no. 7, p. 73709, 2013.
  • G. S. Nolas, H. J. Goldsmid, and T. M. Tritt, ‘Thermal Conductivity: Theory, Properties, and Applications’, 2004.
  • M. G. Holland, ‘Phonon scattering in semiconductors from thermal conductivity studies’, Phys. Rev., vol. 134, no. 2A, p. A471, 1964.
  • M. Grundmann, ‘The Physics of Phonons: An Introduction Including Devices and Nanophysics’. Springer, Berlin, 2006.
  • O. Madelung, U. Rössler, and M. Schulz, ‘Non-tetrahedrally bonded elements and binary compounds I’, Landolt-Börnstein Ser., vol. 3, 1998.
  • H. Wang, H. Jin, W. Chu, and Y. Guo, ‘Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method’, J. Alloys Compd., vol. 499, no. 1, pp. 68–74, 2010.
There are 27 citations in total.

Details

Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Övgü Ceyda Yelgel

Publication Date December 1, 2017
Submission Date February 17, 2017
Acceptance Date June 1, 2017
Published in Issue Year 2017

Cite

APA Yelgel, Ö. C. (2017). Theoretical Study of Thermal Conductivities of n- and p-type Doped Mg2Si1-xSnx Thermoelectric Solid Solutions. Sakarya University Journal of Science, 21(6), 1221-1228. https://doi.org/10.16984/saufenbilder.292752
AMA Yelgel ÖC. Theoretical Study of Thermal Conductivities of n- and p-type Doped Mg2Si1-xSnx Thermoelectric Solid Solutions. SAUJS. December 2017;21(6):1221-1228. doi:10.16984/saufenbilder.292752
Chicago Yelgel, Övgü Ceyda. “Theoretical Study of Thermal Conductivities of N- and P-Type Doped Mg2Si1-XSnx Thermoelectric Solid Solutions”. Sakarya University Journal of Science 21, no. 6 (December 2017): 1221-28. https://doi.org/10.16984/saufenbilder.292752.
EndNote Yelgel ÖC (December 1, 2017) Theoretical Study of Thermal Conductivities of n- and p-type Doped Mg2Si1-xSnx Thermoelectric Solid Solutions. Sakarya University Journal of Science 21 6 1221–1228.
IEEE Ö. C. Yelgel, “Theoretical Study of Thermal Conductivities of n- and p-type Doped Mg2Si1-xSnx Thermoelectric Solid Solutions”, SAUJS, vol. 21, no. 6, pp. 1221–1228, 2017, doi: 10.16984/saufenbilder.292752.
ISNAD Yelgel, Övgü Ceyda. “Theoretical Study of Thermal Conductivities of N- and P-Type Doped Mg2Si1-XSnx Thermoelectric Solid Solutions”. Sakarya University Journal of Science 21/6 (December 2017), 1221-1228. https://doi.org/10.16984/saufenbilder.292752.
JAMA Yelgel ÖC. Theoretical Study of Thermal Conductivities of n- and p-type Doped Mg2Si1-xSnx Thermoelectric Solid Solutions. SAUJS. 2017;21:1221–1228.
MLA Yelgel, Övgü Ceyda. “Theoretical Study of Thermal Conductivities of N- and P-Type Doped Mg2Si1-XSnx Thermoelectric Solid Solutions”. Sakarya University Journal of Science, vol. 21, no. 6, 2017, pp. 1221-8, doi:10.16984/saufenbilder.292752.
Vancouver Yelgel ÖC. Theoretical Study of Thermal Conductivities of n- and p-type Doped Mg2Si1-xSnx Thermoelectric Solid Solutions. SAUJS. 2017;21(6):1221-8.