Research Article
BibTex RIS Cite

Investigation of minimization and reusablility of the reject from electrodialysis processes: an example textile wastewater

Year 2017, , 943 - 950, 01.10.2017
https://doi.org/10.16984/saufenbilder.304492

Abstract

Membarane processes are widely used in both drinking water treatment and wastewater treatment. This method is separation process, in the most general sense, rather than treatment. In the meantime, it is not possible to avoid reject formation. For this reason, the biggest problem is the extra effort required to remove the reject from the membrane processes. In this case, the use of new membrane processes and new operation methods are needed. For this reason, at the first stage, textile wastewater were treated by classical electrodialysis (CED) process. 10% (1 L wastewater / 0.1 L rejected portion) of the concentrate stream was generated from this process. Utilizing the reject, 15 L of wastewater treatment was realized. At this point, the concentrate stream can be reduced to 0.67%. Likewise, in the bipolar membrane electrodialysis (BMED) process, when the initial solution of anolite and catholyte was placed as a 0.1L initial solution, the reject flow (20 L wastewater, 0.1 L anolite, 0.1 L catholyte) could be reduced to 1%. In this study, it was observed that the reject stream could be used repeatedly and minimized in the electrodialysis processes. At the same time, mixed acidic and alkaline solutions with pH value of 0,32 M H+ and 0,38 M OH- value were obtained by BMED process. According to the initial values, 47.5 times (0.38 / 0.008) and (0.32 / 0.009) 35.6 times more concentrated alkaine and acidic solutions were obtained

References

  • Water Environment Federation,” 1.Introductio,” in Membrane Systems for Wastewater Ttreatment, 1.st ed., New York.Mc.Graw-Hill, 1994, pp. 2-10
  • M.E. Malack, N.M. Rahman,”Treatment of refinery wastewater using membrane processes”. Editors: K. Mohanty, K. Mihir, K Purkait, Membrane Technologies and Applications, 120-129, Boca Raton, New York, CRC Press, 2011, ch.7, pp-121-129.
  • Y. Shui, L. Yan, C.B. Xiang, L.J. Hong,“Treatment of oily wastewater by organic-inorganic composite tubular ultrafiltration (UF) membranes,” Desalination, vol. 196, no. 1-3, pp. 76-83, 2006.
  • P. Banerjee, T.K. Dey, S. Sarkar, S. Swarnakar, A. Mukhopadhyay, S. Ghosh, “Treatment of cosmetic effluent in different configuration of ceramic UF membrane based bioreactor : Toxicity evaluation of the untreated and treated wastewater using catfish (Heteroneuptes fossilis),” Chemosphere, vol.146, pp. 133-144, 2016.
  • L. Andrade, A.O. Aguiar, W.L. Pires, L.B. Grossi, M.C.S. Amaral “Comprehensive bench and pilot scale investigation of NF for Gold mining effluent treatment: Membrane performance and fouling control strategies”, Separation and Purification Technologies, vol. 174, pp. 44-56, 2017.
  • J. Escalona, J. Grooth, J. Font, K. Nijmeijer. “Removal of BPA by enzyme polymerization using NF membranes,” Journal of Membrane Sciences, vol. 468, pp. 192-201, 2014.
  • Y. Song, X. Gao, T. Li, C. Gao, J. Zhou, “Improvement of overall water recovery by increasing RNF with recirculation in a NF-RO inegrated membrane processes for seawater desalination,” Desalination, vol. 361, pp. 95-104, 2015.
  • X. Ji, E. Curcio, S.A. Obadani, G.D. Profio, E. Fontananova, E. Drioli. “Membrane distillation- cyristallizaton of seawater reverse osmosis brine”, Sepaaration and Purification Technology, v.71, pp.76-82,2010.
  • Guizi Chen, Yinghong Lu, William B. Krantz, Rong Wang, Anthony G. Fane. Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge,” Journal of Membrane Science, v. 450, pp. 1-11, 2014.
  • K. Kimura. H. Hara, Y. Watanabe, “Removal of pharmaceutical compounds by submerged membrane bioreactors (MBR’s),” Desalination, vol. 178 (1–3),pp. 135-140, 2005.
  • W. Tang , N.G.H. Yong. “Concentration of brine by forward osmosis. Performance and influence of membrane structure.” Desalination, vol 224, pp.143-153, 2008.
  • X.Ji, E. Curcio, S.A. Obadani, G.D. Profio, E. Fontananova Drioli E. “Membrane distillation-cyrisallization of seawater reverse osmosis brine,” Separation and Purification Techboogy, vol.71, pp 76-82, 2010.
  • G. Qin, C.C.K. Liu, N.H. Richman, J.E.T. Moncur. “Agriculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a Pilot Study on CoconutIsland, Hawai.” Agriculture Engineering, vol. 32, pp. 365-378, 2005.
  • United States Environmental Protection Agency(USEPA), “Membrane Sepertion”, Drinking Water Database, 2007.
  • Voltea, Membrane Capacitivedeionization (CapDI).[Online]. Available: http://voltea.com/wp-content/uploads/2016/03/402D002_Rev01_Tech-Bulletin_Technology-Comparison-1.pdf
  • G. Qin, C.C.K. Liu, N.H. Richman, J.E.T. Moncur. “Agriculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a Pilot Study on CoconutIsland, Hawai.” Agriculture Engineering, vol. 32, pp. 365-378, 2005.
  • F.]Ilhan, H.A. Kabuk,Y. Avsar, M.T. Gonullu. “Recovery of Mixed Acid and Base from Wastewater with Bipolar Membrane Electrodialsis – a Case Study,” Desalination and Water Treatnent, vol.57(11), pp. 5165-5173, 2016.
  • APHA ( American Puplic Health Association), Standart Methods fort the examination of water&wastewater., 21. Edition, 2005.
  • F. Ilhan, H.A. Kabuk U. Kurt, Y. Avsar, H. Sari, M.T. Gonullu. “Evaluation of treatment and recovery of leachate by bipolar membrane electrodialysis process”. Chemical Engineering and Processing, 75, 67-74, 2014.

Elektrodiyaliz proseslerinden kaynaklanan konsantre akımın minimizasyonu ve yeniden kullanılabilirliğinin incelenmesi: Tekstil atıksuyu örneği

Year 2017, , 943 - 950, 01.10.2017
https://doi.org/10.16984/saufenbilder.304492

Abstract

 Membran prosesler hem içme suyu arıtımında hem de atıksu
arıtımında yaygın olarak kullanılmaktadır. Bu arıtım yöntemi en genel anlamda
arıtımdan ziyade bir ayırma prosesidir. Yalnız bu arada da konsantre oluşumunun
önüne geçmek mümkün olmamaktadır. Bu nedenden ötürü en büyük problem olarak
membran proseslerden kaynaklanan konsantre kısmın arıtımı için de ekstra çaba
sarf edilmektedir.
  Bu durumda yeni
membran proseslerin kullanımına ve yeni çalışma metotlarına ihtiyaç
duyulmaktadır. Bu nedenle ilk olarak klasik elektrodiyaliz (KED) prosesi ile
çalışılmıştır. Bu proseste oluşan konsantre akım oranı %10 (1L atıksu /0,1 L
konsantre kısım), konsantre akım tekrar tekrar kullanılarak 15 L atıksu arıtımı
gerçekleştirilmiş ve konsantre akım
 
%0,67 oranına kadar indirgenebilmiştir. Benzer şekilde bipolar membranlı
elektrodiyaliz (BMED) prosesinde de anolit ve katolit olarak 0,1L başlangıç
çözeltisi konulduğunda tekrarlı arıtım sonucunda konsantre akım(20 L atıksu,
0,1 L anolit,0,1 L katolit) %1 seviyelerine kadar indirgenebilmiştir. Bu
çalışmada konsantre akımın elektrodiyaliz proseslerinde tekrar tekrar
kullanılabileceği ve minimize edilebileceği görülmüştür. Aynı zamanda BMED
prosesi ile
  PH değeri 0,32 M H+  ve 0,38 M OH- değerine sahip karışık asidik
ve alkali çözeltiler elde edilmiştir. Başlangıç değerlerine bakıldığında 47,5
kat (0,38/0,008) ve (0,32/0,009)
  35,6
kat daha yoğun alkali ve asidik çözeltiler elde edilebilmiştir.

References

  • Water Environment Federation,” 1.Introductio,” in Membrane Systems for Wastewater Ttreatment, 1.st ed., New York.Mc.Graw-Hill, 1994, pp. 2-10
  • M.E. Malack, N.M. Rahman,”Treatment of refinery wastewater using membrane processes”. Editors: K. Mohanty, K. Mihir, K Purkait, Membrane Technologies and Applications, 120-129, Boca Raton, New York, CRC Press, 2011, ch.7, pp-121-129.
  • Y. Shui, L. Yan, C.B. Xiang, L.J. Hong,“Treatment of oily wastewater by organic-inorganic composite tubular ultrafiltration (UF) membranes,” Desalination, vol. 196, no. 1-3, pp. 76-83, 2006.
  • P. Banerjee, T.K. Dey, S. Sarkar, S. Swarnakar, A. Mukhopadhyay, S. Ghosh, “Treatment of cosmetic effluent in different configuration of ceramic UF membrane based bioreactor : Toxicity evaluation of the untreated and treated wastewater using catfish (Heteroneuptes fossilis),” Chemosphere, vol.146, pp. 133-144, 2016.
  • L. Andrade, A.O. Aguiar, W.L. Pires, L.B. Grossi, M.C.S. Amaral “Comprehensive bench and pilot scale investigation of NF for Gold mining effluent treatment: Membrane performance and fouling control strategies”, Separation and Purification Technologies, vol. 174, pp. 44-56, 2017.
  • J. Escalona, J. Grooth, J. Font, K. Nijmeijer. “Removal of BPA by enzyme polymerization using NF membranes,” Journal of Membrane Sciences, vol. 468, pp. 192-201, 2014.
  • Y. Song, X. Gao, T. Li, C. Gao, J. Zhou, “Improvement of overall water recovery by increasing RNF with recirculation in a NF-RO inegrated membrane processes for seawater desalination,” Desalination, vol. 361, pp. 95-104, 2015.
  • X. Ji, E. Curcio, S.A. Obadani, G.D. Profio, E. Fontananova, E. Drioli. “Membrane distillation- cyristallizaton of seawater reverse osmosis brine”, Sepaaration and Purification Technology, v.71, pp.76-82,2010.
  • Guizi Chen, Yinghong Lu, William B. Krantz, Rong Wang, Anthony G. Fane. Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge,” Journal of Membrane Science, v. 450, pp. 1-11, 2014.
  • K. Kimura. H. Hara, Y. Watanabe, “Removal of pharmaceutical compounds by submerged membrane bioreactors (MBR’s),” Desalination, vol. 178 (1–3),pp. 135-140, 2005.
  • W. Tang , N.G.H. Yong. “Concentration of brine by forward osmosis. Performance and influence of membrane structure.” Desalination, vol 224, pp.143-153, 2008.
  • X.Ji, E. Curcio, S.A. Obadani, G.D. Profio, E. Fontananova Drioli E. “Membrane distillation-cyrisallization of seawater reverse osmosis brine,” Separation and Purification Techboogy, vol.71, pp 76-82, 2010.
  • G. Qin, C.C.K. Liu, N.H. Richman, J.E.T. Moncur. “Agriculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a Pilot Study on CoconutIsland, Hawai.” Agriculture Engineering, vol. 32, pp. 365-378, 2005.
  • United States Environmental Protection Agency(USEPA), “Membrane Sepertion”, Drinking Water Database, 2007.
  • Voltea, Membrane Capacitivedeionization (CapDI).[Online]. Available: http://voltea.com/wp-content/uploads/2016/03/402D002_Rev01_Tech-Bulletin_Technology-Comparison-1.pdf
  • G. Qin, C.C.K. Liu, N.H. Richman, J.E.T. Moncur. “Agriculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a Pilot Study on CoconutIsland, Hawai.” Agriculture Engineering, vol. 32, pp. 365-378, 2005.
  • F.]Ilhan, H.A. Kabuk,Y. Avsar, M.T. Gonullu. “Recovery of Mixed Acid and Base from Wastewater with Bipolar Membrane Electrodialsis – a Case Study,” Desalination and Water Treatnent, vol.57(11), pp. 5165-5173, 2016.
  • APHA ( American Puplic Health Association), Standart Methods fort the examination of water&wastewater., 21. Edition, 2005.
  • F. Ilhan, H.A. Kabuk U. Kurt, Y. Avsar, H. Sari, M.T. Gonullu. “Evaluation of treatment and recovery of leachate by bipolar membrane electrodialysis process”. Chemical Engineering and Processing, 75, 67-74, 2014.
There are 19 citations in total.

Details

Subjects Environmental Sciences
Journal Section Research Articles
Authors

Fatih İlhan

Publication Date October 1, 2017
Submission Date April 7, 2017
Acceptance Date July 1, 2017
Published in Issue Year 2017

Cite

APA İlhan, F. (2017). Investigation of minimization and reusablility of the reject from electrodialysis processes: an example textile wastewater. Sakarya University Journal of Science, 21(5), 943-950. https://doi.org/10.16984/saufenbilder.304492
AMA İlhan F. Investigation of minimization and reusablility of the reject from electrodialysis processes: an example textile wastewater. SAUJS. October 2017;21(5):943-950. doi:10.16984/saufenbilder.304492
Chicago İlhan, Fatih. “Investigation of Minimization and Reusablility of the Reject from Electrodialysis Processes: An Example Textile Wastewater”. Sakarya University Journal of Science 21, no. 5 (October 2017): 943-50. https://doi.org/10.16984/saufenbilder.304492.
EndNote İlhan F (October 1, 2017) Investigation of minimization and reusablility of the reject from electrodialysis processes: an example textile wastewater. Sakarya University Journal of Science 21 5 943–950.
IEEE F. İlhan, “Investigation of minimization and reusablility of the reject from electrodialysis processes: an example textile wastewater”, SAUJS, vol. 21, no. 5, pp. 943–950, 2017, doi: 10.16984/saufenbilder.304492.
ISNAD İlhan, Fatih. “Investigation of Minimization and Reusablility of the Reject from Electrodialysis Processes: An Example Textile Wastewater”. Sakarya University Journal of Science 21/5 (October 2017), 943-950. https://doi.org/10.16984/saufenbilder.304492.
JAMA İlhan F. Investigation of minimization and reusablility of the reject from electrodialysis processes: an example textile wastewater. SAUJS. 2017;21:943–950.
MLA İlhan, Fatih. “Investigation of Minimization and Reusablility of the Reject from Electrodialysis Processes: An Example Textile Wastewater”. Sakarya University Journal of Science, vol. 21, no. 5, 2017, pp. 943-50, doi:10.16984/saufenbilder.304492.
Vancouver İlhan F. Investigation of minimization and reusablility of the reject from electrodialysis processes: an example textile wastewater. SAUJS. 2017;21(5):943-50.