Araştırma Makalesi
BibTex RIS Kaynak Göster

PVA Kapı dielektrik tabanlı organik ince film transistörlerin performansı üzerindeki solvent etkileri

Yıl 2017, , 1463 - 1468, 01.12.2017
https://doi.org/10.16984/saufenbilder.315161

Öz

Bu çalışmada, üst kapı alt kontak transistörü hazırladık ve
karakterize ettik. Aktif tabaka olarak poli [2-metoksi-5- (2-etilheksiloksi)
-1,4-fenilenevinilen] (MEH: PPV) kapı dielektrik malzemesi olarak Polivinil
alkol (PVA) kullanılmıştır. Cihazların transistör parametreleri üzerinde çözücü
etkisini araştırılmıştır. PVA için çözücü olarak dimetil sülfoksit (DMSO) ve
ultra saf su kullanılmıştır. DMSO'nun mobilite, açma / kapama oranı ve Vth
değerleri gibi transistör parametrelerini olumlu etkilediği açık bir şekilde
görülmüştür. Ultra saf su ve DMSO içinde çözünmüş PVA kullanılarak imal edilen
OFET'lerin out-put ve transfer özellikleri incelenmiştir. OFET'in
hareketliliği, DMSO'nun PVA çözücüsü olarak kullanıldığında artmıştır. Delik
hareketliliği PVA: su bazlı cihazdan 3.07x10-5 cm2 V-1 s-1 ve PVA:DMSO tabanlı
cihazdan 2.17x10-4 cm2 V-1 s-1 olarak bulunmuştur.

Kaynakça

  • [1] S. Scheinert, G. Paasch, I. Hörselmann, A. Herasimovich, “Low-cost submicrometer organic fieled effect transistors,” Advances in Polymer Science, vol. 223 pp. 155, 2010.
  • [2] Z. Alpaslan, A. Kösemen, O. Örnek, Y. Yerli, E.S. San, TiO2-Based Organic Hybrid Solar Cells with Mn+2 Doping,“International Journal of Photoenergy”,2011, 734618, 8 pages, 2011.
  • [3] O. Ornek, “The effect of TiO2 layer annealing medium on efficiency in solar cells in inverted structure prepared by TiO2”, Energy Education Science and Technology Part A: Energy Science and Research, 30(1), 97-102, 2012.
  • [4] C. Liao, F. Yan, “Organic semiconductors in organic thin-film transistor-based chemical and biological sensors,” Polymer reviews, vol.53, pp. 352, 2013.
  • [5] Chong-An Di, Y. Liu, G. Yu, D. Zhu, “Interface engineering: an effective approach toward high-performance organic field-effect transistors”, Accounts of chemical research, vol. 42 pp. 1573, 2009.
  • [6] L.Torsi, M. Magliulo, K. Manoli, G. Palazzo, “Organic field-effect transistor sensors: a tutorial review,” Chemical Society reviews, vol. 42, pp. 8612-8628, 2013.
  • [7] A. N. Sokolov, B. C-K. Tee, C. J. Bettinger, J. B.-H. Tok, Z. Bao, “Mechanistic Considerations of Bending Strain Effects within Organic Semiconductors on Polymer Dielectrics,” Advanced functional materials, vol. 45, pp. 371, 2012.
  • [8] A. Kösemen, S. E. Sana, M. Okutana, Z. Doğruyol, A. Demir, Y. Yerli, B. Şengez, E. Başaran, F. Yılmaz, “A novel field effect transistor with dielectric polymer gel”, Microelectronic Engineering vol. 88 pp. 17–20, 2011.
  • [9] Z. Alpaslan Kösemen, A. Kösemen, S. Öztürk, B. Canimkurbey, S. E. San, Y. Yerli, A. V. Tunç, “Effect of intrinsic polymer properties on the photo sensitive organic field-effect transistors (Photo-OFETs)”, Microelectronic Engineering, vol. 161, pp. 36–42, 2016.
  • [10] F. Todescato, R. Capelli, F. Dinelli, M. Murgia, N. Camaioni, M. Yang, R. Bozio, M. Muccini, ” Correlation between Dielectric/Organic Interface Properties and Key Electrical Parameters in PPV-based OFETs”, Journal of Physical Chemistry B, vol. 112, pp. 10130–10136, 2008.
  • [11] G. Horowitz, X. Peng, D. Fichou, F. Garnier, “The oligothiophene‐based field‐effect transistor: How it works and how to improve it”, Journal of Applied Physics, vol. 67, pp. 528, 1990.
  • [12] F. Dinelli, M. Murgia, P. Levy, M. Cavallini, D. de Leeuw, F. Biscarini, “Spatially correlated charge transport in organic thin film transistors”, Physical Review Letter, vol. 92, pp. 6802, 2004.
  • [13] K.-Jun Baeg, A. Facchettic, Y.-Young Noh, “Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors”, Journal of Materials Chemistry, vol. 22, pp. 21138, 2012.
  • [14] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus and R. H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors”, Nature, vol. 434, pp. 194, 2005.
  • [15] M.-H. Yoon, C. Kim, A. Facchetti and T. J. Marks, “Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors”, Journal of American Chemical Society, vol. 128, pp. 12851, 2006.
  • [16] Y.-Y. Noh and H. Sirringhaus, “Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors”, Organic, Electronic, vol. 10, pp. 174, 2009.
  • [17] K.-J. Baeg, D. Khim, S.-W. Jung, J. B. Koo, I.-K. You, Y.-C. Nah, D.-Y. Kim and Y.-Y. Noh, “Polymer Dielectrics and Orthogonal Solvents Effects for High Performance Inkjet-Printed Top-Gated P-channel Polymer Field -Effect Transistors”, ETRI Journal, vol. 33, pp. 887, 2011.
  • [18] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics”, Advanced. Materials, vol. 14, pp. 99117, 2002.
  • [19] F. Antonio, M. H. Yoon and T. J. Marks, “Gate dielectrics for organic field‐effect transistors: New opportunities for organic electronics”, Advanced. Materials, vol. 17, pp. 17051725, 2005.
  • [20] Veres, J., Ogier, S., G Lloyd, “Gate Insulators in Organic Field-Effect Transistors”, Chemistry of Materials, vol. 16, pp. 4543, 2004.

Solvent effects on the performance of the PVA gate dielectric based organic thin film transistors

Yıl 2017, , 1463 - 1468, 01.12.2017
https://doi.org/10.16984/saufenbilder.315161

Öz

In this study, we prepared top-gate bottom-contact
transistor and characterized.
Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH:PPV) was used as
active layer and Polyvinyl alcohol (PVA) as used gate dielectric material. We
investigated solvent effect on the transistor parameters of the devices.
Dimethyl sulfoxide (DMSO) and ultra-pure water were used as solvent for PVA.
Effect of DMSO on transistor parameters was investigated and clearly seen that
DMSO have positively influence transistor parameters such as mobility, on/off
ratio and Vth values. Output and transfer properties of OFET’s that has been
fabricated by using PVA dissolved in ultra-pure water and DMSO were analayzed.
Mobility of the OFET increased when DMSO used as solvent of PVA. Hole
mobility’s are found as 3.07x10-5 cm2 V−1 s−1
from PVA:water based device and 2.17x10-4 cm2 V−1
s−1 from PVA:DMSO based device.

Kaynakça

  • [1] S. Scheinert, G. Paasch, I. Hörselmann, A. Herasimovich, “Low-cost submicrometer organic fieled effect transistors,” Advances in Polymer Science, vol. 223 pp. 155, 2010.
  • [2] Z. Alpaslan, A. Kösemen, O. Örnek, Y. Yerli, E.S. San, TiO2-Based Organic Hybrid Solar Cells with Mn+2 Doping,“International Journal of Photoenergy”,2011, 734618, 8 pages, 2011.
  • [3] O. Ornek, “The effect of TiO2 layer annealing medium on efficiency in solar cells in inverted structure prepared by TiO2”, Energy Education Science and Technology Part A: Energy Science and Research, 30(1), 97-102, 2012.
  • [4] C. Liao, F. Yan, “Organic semiconductors in organic thin-film transistor-based chemical and biological sensors,” Polymer reviews, vol.53, pp. 352, 2013.
  • [5] Chong-An Di, Y. Liu, G. Yu, D. Zhu, “Interface engineering: an effective approach toward high-performance organic field-effect transistors”, Accounts of chemical research, vol. 42 pp. 1573, 2009.
  • [6] L.Torsi, M. Magliulo, K. Manoli, G. Palazzo, “Organic field-effect transistor sensors: a tutorial review,” Chemical Society reviews, vol. 42, pp. 8612-8628, 2013.
  • [7] A. N. Sokolov, B. C-K. Tee, C. J. Bettinger, J. B.-H. Tok, Z. Bao, “Mechanistic Considerations of Bending Strain Effects within Organic Semiconductors on Polymer Dielectrics,” Advanced functional materials, vol. 45, pp. 371, 2012.
  • [8] A. Kösemen, S. E. Sana, M. Okutana, Z. Doğruyol, A. Demir, Y. Yerli, B. Şengez, E. Başaran, F. Yılmaz, “A novel field effect transistor with dielectric polymer gel”, Microelectronic Engineering vol. 88 pp. 17–20, 2011.
  • [9] Z. Alpaslan Kösemen, A. Kösemen, S. Öztürk, B. Canimkurbey, S. E. San, Y. Yerli, A. V. Tunç, “Effect of intrinsic polymer properties on the photo sensitive organic field-effect transistors (Photo-OFETs)”, Microelectronic Engineering, vol. 161, pp. 36–42, 2016.
  • [10] F. Todescato, R. Capelli, F. Dinelli, M. Murgia, N. Camaioni, M. Yang, R. Bozio, M. Muccini, ” Correlation between Dielectric/Organic Interface Properties and Key Electrical Parameters in PPV-based OFETs”, Journal of Physical Chemistry B, vol. 112, pp. 10130–10136, 2008.
  • [11] G. Horowitz, X. Peng, D. Fichou, F. Garnier, “The oligothiophene‐based field‐effect transistor: How it works and how to improve it”, Journal of Applied Physics, vol. 67, pp. 528, 1990.
  • [12] F. Dinelli, M. Murgia, P. Levy, M. Cavallini, D. de Leeuw, F. Biscarini, “Spatially correlated charge transport in organic thin film transistors”, Physical Review Letter, vol. 92, pp. 6802, 2004.
  • [13] K.-Jun Baeg, A. Facchettic, Y.-Young Noh, “Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors”, Journal of Materials Chemistry, vol. 22, pp. 21138, 2012.
  • [14] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus and R. H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors”, Nature, vol. 434, pp. 194, 2005.
  • [15] M.-H. Yoon, C. Kim, A. Facchetti and T. J. Marks, “Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors”, Journal of American Chemical Society, vol. 128, pp. 12851, 2006.
  • [16] Y.-Y. Noh and H. Sirringhaus, “Ultra-thin polymer gate dielectrics for top-gate polymer field-effect transistors”, Organic, Electronic, vol. 10, pp. 174, 2009.
  • [17] K.-J. Baeg, D. Khim, S.-W. Jung, J. B. Koo, I.-K. You, Y.-C. Nah, D.-Y. Kim and Y.-Y. Noh, “Polymer Dielectrics and Orthogonal Solvents Effects for High Performance Inkjet-Printed Top-Gated P-channel Polymer Field -Effect Transistors”, ETRI Journal, vol. 33, pp. 887, 2011.
  • [18] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics”, Advanced. Materials, vol. 14, pp. 99117, 2002.
  • [19] F. Antonio, M. H. Yoon and T. J. Marks, “Gate dielectrics for organic field‐effect transistors: New opportunities for organic electronics”, Advanced. Materials, vol. 17, pp. 17051725, 2005.
  • [20] Veres, J., Ogier, S., G Lloyd, “Gate Insulators in Organic Field-Effect Transistors”, Chemistry of Materials, vol. 16, pp. 4543, 2004.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Araştırma Makalesi
Yazarlar

Arif Kösemen

Yayımlanma Tarihi 1 Aralık 2017
Gönderilme Tarihi 21 Mayıs 2017
Kabul Tarihi 22 Eylül 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Kösemen, A. (2017). Solvent effects on the performance of the PVA gate dielectric based organic thin film transistors. Sakarya University Journal of Science, 21(6), 1463-1468. https://doi.org/10.16984/saufenbilder.315161
AMA Kösemen A. Solvent effects on the performance of the PVA gate dielectric based organic thin film transistors. SAUJS. Aralık 2017;21(6):1463-1468. doi:10.16984/saufenbilder.315161
Chicago Kösemen, Arif. “Solvent Effects on the Performance of the PVA Gate Dielectric Based Organic Thin Film Transistors”. Sakarya University Journal of Science 21, sy. 6 (Aralık 2017): 1463-68. https://doi.org/10.16984/saufenbilder.315161.
EndNote Kösemen A (01 Aralık 2017) Solvent effects on the performance of the PVA gate dielectric based organic thin film transistors. Sakarya University Journal of Science 21 6 1463–1468.
IEEE A. Kösemen, “Solvent effects on the performance of the PVA gate dielectric based organic thin film transistors”, SAUJS, c. 21, sy. 6, ss. 1463–1468, 2017, doi: 10.16984/saufenbilder.315161.
ISNAD Kösemen, Arif. “Solvent Effects on the Performance of the PVA Gate Dielectric Based Organic Thin Film Transistors”. Sakarya University Journal of Science 21/6 (Aralık 2017), 1463-1468. https://doi.org/10.16984/saufenbilder.315161.
JAMA Kösemen A. Solvent effects on the performance of the PVA gate dielectric based organic thin film transistors. SAUJS. 2017;21:1463–1468.
MLA Kösemen, Arif. “Solvent Effects on the Performance of the PVA Gate Dielectric Based Organic Thin Film Transistors”. Sakarya University Journal of Science, c. 21, sy. 6, 2017, ss. 1463-8, doi:10.16984/saufenbilder.315161.
Vancouver Kösemen A. Solvent effects on the performance of the PVA gate dielectric based organic thin film transistors. SAUJS. 2017;21(6):1463-8.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.