Araştırma Makalesi
BibTex RIS Kaynak Göster

Ru2FeGa Heusler alaşımının yapısal, elektronik, elastik ve fonon özelliklerinin ilk prensip çalışması

Yıl 2017, , 1505 - 1511, 01.12.2017
https://doi.org/10.16984/saufenbilder.324124

Öz

Heusler tipi
alaşımlar
ferromanyetiktir
ve ilginç manyetik özellikler göstermelerinden dolayı spin-elektronik ve magneto-elektronik
uygulamalar için ideal malzeme grubudur. L21
kristal yapısındaki Ru2FeGa Heusler alaşımının yapısal, elektronik,
elastik ve fonon özellikleri, yoğunluk fonksiyonel teorisi (DFT) içerisinde genelleştirilmiş eğim
yaklaşımı (GGA) metodu kullanılarak analiz
edildi. Ru2FeGa alaşımının hesaplanan örgü sabiti ve manyetik
momenti, teorik sonuç ile iyi bir şekilde uyumludur. Bant yapısının analizi, Ru2FeGa’nın
metalik olduğunu ortaya koymaktadır. Ayrıca, bu alaşım için Bulk modülü (B),
Shear
modülü (G), B/G oranı, Young modülü (E) ve tek kristal elastik sabitler (Cij) hesaplandı. Fonon
dağılım eğrileri, yoğunluk fonksiyonel pertürbasyon teorisinin ilk prensip
doğrusal tepki yaklaşımı kullanılarak elde edildi.

Kaynakça

  • [1] F. Heusler, Verhandlugen der Deutschen Physikalischen Gesellschaft, sec. 5, pp. 219, 1903.
  • [2] I. Galanakis, P. H. Dederichs, and N. Papanikolaou, “Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys,” Phys. Rev. B, vol. 66, no. 17, pp. 174429, 2002.
  • [3] N. Arıkan, A. İyigör, A. Candan, Ş. Uğur, Z. Charifi, H. Baaziz, and G. Uğur, “Electronic and phonon properties of the full-Heusler alloys X2YAl (X= Co, Fe and Y= Cr, Sc): a density functional theory study,” Journal of Materials Science, vol. 49, no. 12, pp. 4180-4190, 2014.
  • [4] F. Dahmane, Y. Mogulkoc, B. Doumi, A. Tadjer, R. Khenata, S. B. Omran, D. P. Rai, G. Murtaza and D. Varshney, “Structural, electronic and magnetic properties of Fe2-based full Heusler alloys: A first principle study,” Journal of Magnetism and Magnetic Materials, vol. 407, pp. 167-174, 2016.
  • [5] A. Candan, G. Uğur, Z. Charifi, H. Baaziz, and M. R. Ellialtıoğlu, “Electronic structure and vibrational properties in cobalt-based full-Heusler compounds: A first principle study of Co2MnX (X= Si, Ge, Al, Ga),” Journal of Alloys and Compounds, vol. 560, pp. 215-222, 2013.
  • [6] S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. Parkin, “Unified explanation of chemical ordering, the Slater-Pauling rule, and half-metallicity in full Heusler compounds,” Physical Review B, vol. 95, no. 4, pp. 045140, 2017.
  • [7] S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. Parkin, “Origin of the Tetragonal Ground State of Heusler Compounds,” Physical Review Applied, vol. 7, no. 3, pp. 034022, 2017.
  • [8] M. Gilleßen, and R. Dronskowski, Maßgeschneidertes und Analytik-Ersatz: über die quantenchemischen Untersuchungen einiger ternärer intermetallischer Verbindungen (No. RWTH-CONV-113777), Fachgruppe Chemie, 2010.
  • [9] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal properties from density-functional perturbation theory,” Reviews of Modern Physics, vol. 73, no. 2, pp. 515, 2001.
  • [10] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865-3868, 1996.
  • [11] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, vol. 46, no.11, pp. 6671, 1992.
  • [12] Y. Zhang, and W. Yang, “Comment on: Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 80, no. 4, pp. 890, 1998.
  • [13] S. Baroni, P. Giannozzi, and A. Testa, “Green’s-function approach to linear response in solids,” Physical Review Letters, vol. 58, no. 18, pp. 1861, 1987.
  • [14] M. Methfessel and A. T. Paxton, “High-precision sampling for Brillouin-zone integration in metals,” Phys. Rev. B, vol. 40, no. 6, pp. 3616- 3621, 1989.
  • [15] F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proceedings of the National Academy of Sciences, vol. 30, no. 9, pp. 244-247, 1944.
  • [16] S. Q. Wang, and H. Q. Ye, “First‐principles study on elastic properties and phase stability of III–V compounds,” Physica status solidi (b), vol. 240, no. 1, pp. 45-54, 2003.
  • [17] O. Örnek, N. Arıkan, A. İyigör, “L12 yapıdaki Co3Al ve Co3Ta alaşımlarının mekanik ve dinamik özellikleri,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 32, pp. 377-384, 2017.
  • [18] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford: At the Clarendon press, 1954.
  • [19] A. Candan, M. Özduran, S. Akbudak, O. Örnek, “First-principles electronic, magnetic, elastic and vibrational properties of Ru2MnGa alloy,” (Oral Presentation), 3rd International Conference on Engineering and Natural Sciences (ICENS 2017), 2017.
  • [20] G. Uğur, A. Candan, Ş. Uğur, A. İyigör, M. Özduran, O. Örnek, “Structural, electronic, elastic, thermodynamic and phonon properties of Ru2YGa (Y= Ti and Sc) alloys in the L21 phase,” (Poster Presentation), 2nd International Congress on the World of Technology and Advanced Materials (WITAM-2016), 2016.

First-Principle study of structural, electronic, elastic and phonon properties of Ru2FeGa Heusler alloy

Yıl 2017, , 1505 - 1511, 01.12.2017
https://doi.org/10.16984/saufenbilder.324124

Öz

Heusler type alloys are ferromagnetic and are the ideal material for spin-electronic
and magneto-electronic applications due to their interesting magnetic
properties. The structural, electronic,
elastic and phonon properties of the
Ru2FeGa Heusler alloy in L21
crystal structure have been analyzed handling density functional theory (DFT) in
the Generalized Gradient Approximation (GGA) method.
The calculated lattice
constant and magnetic moment of Ru2FeGa alloy is in good agreement
with theoretical result. The analysis of the band structure reveal that Ru2FeGa
is metallic. Furthermore we also calculated the
Bulk
modulu (B),
Shear
modulu (G), B/G ratio, Young modulu (E) and unique-crystal elastic constants (Cij) for this alloy. Phonon-dispersion curve has been
obtained using the first principle linear-response touch of the
density-functional perturbation theory.

Kaynakça

  • [1] F. Heusler, Verhandlugen der Deutschen Physikalischen Gesellschaft, sec. 5, pp. 219, 1903.
  • [2] I. Galanakis, P. H. Dederichs, and N. Papanikolaou, “Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys,” Phys. Rev. B, vol. 66, no. 17, pp. 174429, 2002.
  • [3] N. Arıkan, A. İyigör, A. Candan, Ş. Uğur, Z. Charifi, H. Baaziz, and G. Uğur, “Electronic and phonon properties of the full-Heusler alloys X2YAl (X= Co, Fe and Y= Cr, Sc): a density functional theory study,” Journal of Materials Science, vol. 49, no. 12, pp. 4180-4190, 2014.
  • [4] F. Dahmane, Y. Mogulkoc, B. Doumi, A. Tadjer, R. Khenata, S. B. Omran, D. P. Rai, G. Murtaza and D. Varshney, “Structural, electronic and magnetic properties of Fe2-based full Heusler alloys: A first principle study,” Journal of Magnetism and Magnetic Materials, vol. 407, pp. 167-174, 2016.
  • [5] A. Candan, G. Uğur, Z. Charifi, H. Baaziz, and M. R. Ellialtıoğlu, “Electronic structure and vibrational properties in cobalt-based full-Heusler compounds: A first principle study of Co2MnX (X= Si, Ge, Al, Ga),” Journal of Alloys and Compounds, vol. 560, pp. 215-222, 2013.
  • [6] S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. Parkin, “Unified explanation of chemical ordering, the Slater-Pauling rule, and half-metallicity in full Heusler compounds,” Physical Review B, vol. 95, no. 4, pp. 045140, 2017.
  • [7] S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. Parkin, “Origin of the Tetragonal Ground State of Heusler Compounds,” Physical Review Applied, vol. 7, no. 3, pp. 034022, 2017.
  • [8] M. Gilleßen, and R. Dronskowski, Maßgeschneidertes und Analytik-Ersatz: über die quantenchemischen Untersuchungen einiger ternärer intermetallischer Verbindungen (No. RWTH-CONV-113777), Fachgruppe Chemie, 2010.
  • [9] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal properties from density-functional perturbation theory,” Reviews of Modern Physics, vol. 73, no. 2, pp. 515, 2001.
  • [10] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865-3868, 1996.
  • [11] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, vol. 46, no.11, pp. 6671, 1992.
  • [12] Y. Zhang, and W. Yang, “Comment on: Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 80, no. 4, pp. 890, 1998.
  • [13] S. Baroni, P. Giannozzi, and A. Testa, “Green’s-function approach to linear response in solids,” Physical Review Letters, vol. 58, no. 18, pp. 1861, 1987.
  • [14] M. Methfessel and A. T. Paxton, “High-precision sampling for Brillouin-zone integration in metals,” Phys. Rev. B, vol. 40, no. 6, pp. 3616- 3621, 1989.
  • [15] F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proceedings of the National Academy of Sciences, vol. 30, no. 9, pp. 244-247, 1944.
  • [16] S. Q. Wang, and H. Q. Ye, “First‐principles study on elastic properties and phase stability of III–V compounds,” Physica status solidi (b), vol. 240, no. 1, pp. 45-54, 2003.
  • [17] O. Örnek, N. Arıkan, A. İyigör, “L12 yapıdaki Co3Al ve Co3Ta alaşımlarının mekanik ve dinamik özellikleri,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 32, pp. 377-384, 2017.
  • [18] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford: At the Clarendon press, 1954.
  • [19] A. Candan, M. Özduran, S. Akbudak, O. Örnek, “First-principles electronic, magnetic, elastic and vibrational properties of Ru2MnGa alloy,” (Oral Presentation), 3rd International Conference on Engineering and Natural Sciences (ICENS 2017), 2017.
  • [20] G. Uğur, A. Candan, Ş. Uğur, A. İyigör, M. Özduran, O. Örnek, “Structural, electronic, elastic, thermodynamic and phonon properties of Ru2YGa (Y= Ti and Sc) alloys in the L21 phase,” (Poster Presentation), 2nd International Congress on the World of Technology and Advanced Materials (WITAM-2016), 2016.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Araştırma Makalesi
Yazarlar

Abdullah Candan

Yayımlanma Tarihi 1 Aralık 2017
Gönderilme Tarihi 29 Haziran 2017
Kabul Tarihi 12 Ekim 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Candan, A. (2017). Ru2FeGa Heusler alaşımının yapısal, elektronik, elastik ve fonon özelliklerinin ilk prensip çalışması. Sakarya University Journal of Science, 21(6), 1505-1511. https://doi.org/10.16984/saufenbilder.324124
AMA Candan A. Ru2FeGa Heusler alaşımının yapısal, elektronik, elastik ve fonon özelliklerinin ilk prensip çalışması. SAUJS. Aralık 2017;21(6):1505-1511. doi:10.16984/saufenbilder.324124
Chicago Candan, Abdullah. “Ru2FeGa Heusler alaşımının yapısal, Elektronik, Elastik Ve Fonon özelliklerinin Ilk Prensip çalışması”. Sakarya University Journal of Science 21, sy. 6 (Aralık 2017): 1505-11. https://doi.org/10.16984/saufenbilder.324124.
EndNote Candan A (01 Aralık 2017) Ru2FeGa Heusler alaşımının yapısal, elektronik, elastik ve fonon özelliklerinin ilk prensip çalışması. Sakarya University Journal of Science 21 6 1505–1511.
IEEE A. Candan, “Ru2FeGa Heusler alaşımının yapısal, elektronik, elastik ve fonon özelliklerinin ilk prensip çalışması”, SAUJS, c. 21, sy. 6, ss. 1505–1511, 2017, doi: 10.16984/saufenbilder.324124.
ISNAD Candan, Abdullah. “Ru2FeGa Heusler alaşımının yapısal, Elektronik, Elastik Ve Fonon özelliklerinin Ilk Prensip çalışması”. Sakarya University Journal of Science 21/6 (Aralık 2017), 1505-1511. https://doi.org/10.16984/saufenbilder.324124.
JAMA Candan A. Ru2FeGa Heusler alaşımının yapısal, elektronik, elastik ve fonon özelliklerinin ilk prensip çalışması. SAUJS. 2017;21:1505–1511.
MLA Candan, Abdullah. “Ru2FeGa Heusler alaşımının yapısal, Elektronik, Elastik Ve Fonon özelliklerinin Ilk Prensip çalışması”. Sakarya University Journal of Science, c. 21, sy. 6, 2017, ss. 1505-11, doi:10.16984/saufenbilder.324124.
Vancouver Candan A. Ru2FeGa Heusler alaşımının yapısal, elektronik, elastik ve fonon özelliklerinin ilk prensip çalışması. SAUJS. 2017;21(6):1505-11.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.