Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 1221 - 1233, 01.10.2018
https://doi.org/10.16984/saufenbilder.344752

Öz


Kaynakça

  • [1] V.L. Ginzburg, E.A. Andryushin, Superconductivity, Revised ed. World Scientific Pub. Co. Inc., 2004.
  • [2] M. Hiroshi, T. Yoshiaki, F. Masao and A. Toshihisa, “A new high-Tc oxide superconductor without a rare earth element,” Japanese Journal of Applıed Physıcs Part 2-Letters, vol. 27, no. 2, pp. L209–L210, 1988.
  • [3] P. A. Lee and N. Read, “Why is Tc of the oxide superconductors so low,” Physical Review Letters, vol. 58, no. 25, pp. 2691–2694, 1987.
  • [4] K. Levin, J. H. Kim, J. P. Lu and Q. Si, “Normal state properties in the cuprates and their Fermi-liquid based interpretation,” Physica C, vol. 175, no. 5–6, pp. 449–522, 1991.
  • [5] G. Yildirim, M. Dogruer, F. Karaboga and C. Terzioglu, “Formation of nucleation centers for vortices in Bi-2223 superconducting core by dispersed Sn nanoparticles,” Journal of Alloys and Compounds, vol. 584, pp. 344–351, 2014.
  • [6] O. Gorur, C. Terzioglu, A. Varilci and M. Altunbas, “Investigation of some physical properties of silver diffusion-doped YBa2Cu3O7-x superconductors,” Superconductor Science & Technology, vol. 18, no. 9, pp. 1233–1237, 2005.
  • [7] M. B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci and G. Yildirim, “Investigation of Lu effect on YBa2Cu3O7-delta superconducting compounds,” Journal of Materials Science-Materials In Electronics, vol. 24, no. 3, pp. 896–905, 2013.
  • [8] Y. Zalaoglu, G. Yildirim, C. Terzioglu and O. Gorur, “Detailed analysis on electrical conduction transition from 2D variable range hopping to phonon-assisted 3D VRH mechanism belonging to Bi-site La substituted Bi-2212 system,” Journal of Alloys and Compounds, vol. 622, pp. 489–499, 2015.
  • [9] A. I. Abou-Aly, M. M. H. Abdel Gawad and R. Awad, “Improving the physical properties of (Bi, Pb)-2223 phase by SnO2 nano-particles addition,” Journal of Superconductivity and Novel Magnetism, vol. 24, no. 7, pp. 2077–2084, 2011.
  • [10] M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda, Y. Tomii and H. Mazaki, “High-Tc phase promoted and stabilized in the Bi, Pb-Sr-Ca-Cu-O system,” Japanese Journal of Applied Physics Part 2-Letters, vol. 27, no. 6, pp. L1041–L1043, 1988.
  • [11] C. Y. Shieh, Y. Huang, M. K. Wu and C. Y. Huang, “Preparation of single high-Tc phase Bi-Pb-Sr-Ca-Cu-O superconductor by the EDTA precursor solution method,” Physica C, vol. 185–189, pp. 513–514, 1991.
  • [12] S. A. Halim, A. K. Saleh, H. Azhan, S. B. Mohamed, K. Khalid and J. Suradi, “Synthesis of Bi1.5Pb0.5Sr2Ca2Cu3Oy via sol-gel method using different acetate-derived precursors,” Journal of Materials Science, vol. 35, no. 12, pp. 3043–3046, 2000.
  • [13] A. Tampieri, G. Celotti, S. Lesca, G. Bezzi, T. M. G. la Torretta and G. Magnani, “Bi(Pb)-Sr-Ca-Cu-O(2223) superconductor prepared by improved sol-gel technique,” Journal of the European Ceramic Society, vol. 20, no. 2, pp. 119–126, 2000.
  • [14] I. Hamadneh, A. Agil, A. K. Yahya and S. A. Halim, “Superconducting properties of bulk Bi1.6Pb0.4Sr2Ca2-xCdxCu3O10 system prepared via conventional solid state and coprecipitation methods,” Physica C, vol. 463–465, pp. 207–210, 2007.
  • [15] E. Yanmaz, I. H. Mutlu, S. Nezir and M. Altunbas, “Magnetic field dependence of samples of nominal composition Bi1.6Pb0.4Sr2Ca3Cu4Oy(2234) prepared by various techniques,” Journal of Alloys and Compounds, vol. 239, no. 2, pp. 142–146, 1996.
  • [16] H. B. Huang, G. F. de la Fuente, A. Sotelo, M. T. Ruiz, A. Larrea, L. A. Angurel and R. Navarro, “Ag/(Bi, Pb)-Sr-Ca-Cu-O superconducting tape processing-solid-state chemistry aspects,” Solid State Ionics, vol. 63–65, pp. 889–896, 1993.
  • [17] N. Ghanzanfari, A. Kılıç, A. Gencer and H. Ozkan, “Effects of Nb2O5 addition on superconducting properties of BSCCO,” Solid State Communications, vol. 144, no. 5–6, pp. 210–214, 2007.
  • [18] W. Zhu and P.S. Nicholson, “Atmosphere- temperature-time relationships for the formation of 110 K phase in the Bi-Pb-Sr-Ca-Cu-O superconductor system,” Applıed Physics Letters, vol. 61, no. 6, pp. 717–719, 1992.
  • [19] M. Borik, M. Chernikov, I. Dubov, V. Osiko, V. Veselago, Y. Yakowets and V. Stepankin, “Synthesis conditions superconduction properties of ceramic in the (Bi,Pb)-Sr-Ca-Cu-O system,” Superconductor Science & Technology, vol. 5, no. 3, pp. 151–155, 1992.
  • [20] R. Mawassi, S. Marhaba, M. Roumié, R. Awad, M. Korek and I. Hassan, “Improvement of Superconducting Parameters of Bi1.8Pb0.4Sr2Ca2Cu3O10+δ Added with Nano-Ag,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 5, 1131–1142, 2014.
  • [21] M. Roumié, S. Marhaba, R. Awad, M. Kork, I. Hassan and R. Mawassi, “Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi, Pb)-2223 Phase,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 1, pp. 143–153, 2014.
  • [22] F. Saad Oboudi, “Synthesis and magnetic properties of Bi1.7Pb0.3Sr2Ca2Cu3O10+delta added with nano Y,” Journal of Superconductivity and Novel Magnetism, vol. 30, no. 6, pp. 1473–1482, 2017.
  • [23] N. A. A. Yahya, A. Al-Sharabi, N. Raihan Mohd Suib, W. S. Chiu and R. Abd-Shukor, “Enhanced transport critical current density of (Bi,Pb)-2223/Ag superconductor tapes added with nano-sized Bi2O3,” Ceramics International, vol. 42, no. 16, pp. 18347–18351, 2016.
  • [24] S. Yavuz, O. Bilgili and K. Kocabas, “Effects of superconducting parameters of SnO2 nanoparticles addition on (Bi, Pb)-2223 phase,” Journal of Materials Science-Materials In Electronics, vol. 27, no. 5, pp. 4526–4533, 2016.
  • [25] H. Bagiah, S. A. Halim, S. K. Chen, K. P. Lim, and M. M. Awang Kechik, “Effects of rare earth nanoparticles (M=Sm2O3, Ho2O3, Nd2O3) addition on the microstructure and superconducting transition of Bi1.6Pb0.4Sr2Ca2Cu3O10+delta ceramics,” Sains Malaysiana, vol. 45, no. 4, pp. 643–651, 2016.
  • [26] E. Akdemir, M. Pakdil, H. Bilge, M. F. Kahraman, E. Bekiroglu, G. Yildirim, Y. Zalaoglu, E. Doruk and M. Oz, “Degeneration of mechanical characteristics and performances with Zr nanoparticles inserted in Bi-2223 superconducting matrix and increment in dislocation movement and cracks propagation,” Journal of Materials Science-Materials In Electronics, vol. 27, no. 3, pp. 2276–2287, 2016.
  • [27] S. E. Mousavi Ghahfarokhi, N. Manhoush and I. Kazeminezhad, “The role of PbO nanoparticles doping on the stability of Bi-2223 phase in Bi2-xPbxSr2Ca2Cu4Oy compounds,” Journal of Superconductivity and Novel Magnetism, vol. 29, no. 1, pp. 33–39, 2016.
  • [28] U. Oztornaci and B. Ozkurt, “The effect of nano-sized metallic Au addition on structural and magnetic properties of Bi1.8Sr2AuxCa1.1Cu2.1Oy (Bi-2212) ceramics,” Ceramics International, vol. 43, no. 5, pp. 4545–4550, 2017.
  • [29] B. Akkurt and G. Yıldırım, “Change of mechanical performance and characterization with replacement of Ca by Gd nanoparticles in Bi-2212 system and suppression of durable tetragonal phase by Gd,” Journal of Materials Science: Materials in Electronics, vol. 27, no. 12, pp. 13034–13043, 2016.
  • [30] N. K. Saritekin, M. Pakdil, G. Yildirim, M. Oz and T. Turgay, “Decrement in metastability with Zr nanoparticles inserted in Bi-2223 superconducting system and working principle of hybridization mechanism,” Journal of Materials Science: Materials in Electronics, vol. 27, no. 1, pp. 956–965, 2016.
  • [31] A. Zelati, A. Amirabadizadeh, A. Kompany, H. Salamati and J. Sonier, “Critical current density and intergranular coupling study of the dysprosium oxide nanoparticle added Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductor,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 10, pp. 2185–2193, 2014.
  • [32] N. A. A. Yahya and R. Abd-Shukor, “Effect of different nanosized MgO on the transport critical current density of Bi1.6Pb0.4Sr2Ca2Cu3O10 superconductor,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 2, pp. 329–335, 2014.
  • [33] A. Agail and R. Abd-Shukor, “Transport current density of (Bi1.6Pb0.4)Sr2Ca2Cu3O10 superconductor added with different nano-sized ZnO,” Applied Physics A-Materials Science & Processing, vol. 112, no. 2, pp. 501–506, 2013.
  • [34] W. Kong and R. Abd-Shukor, “Enhanced electrical transport properties of nano NiFe2O4-added (Bi1.6Pb0.4)Sr2Ca2Cu3O10 superconductor,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 2, pp. 257–263, 2010.
  • [35] H. Aydin, O. Cakiroglu, M. Nursoy and C. Terzioglu, “Mechanical and Superconducting Properties of the Bi1.8Pb0.35Sr1.9Ca2.1Cu3GdxOy System,” Chinese Journal of Physics, vol. 47, no. 2, pp. 192–206, 2009.
  • [36] L. Bonoldi, G. L. Calestani, M. G. Francesconi, G. Salsi, M. Sparpaglione and L. Zini, “Structural stability of bismuth-based superconductors under heterovalent substitution,” Physica C, vol. 241, no. 1–2, 37–44, 1995.
  • [37] C. Terzioglu, H. Aydin, O. Ozturk, E. Bekiroglu and I. Belenli, “The influence of Gd addition on microstructure and transport properties of Bi-2223,” Physica B, vol. 403, no. 19–20, pp. 3354–3359, 2008.
  • [38] M. Erdem, O. Ozturk, E. Yucel, S. P. Altintas, A. Varilci, C. Terzioglu and I. Belenli, Effect of Gd addition on the activation energies of Bi-2223 superconductor, Physica B, vol. 406, no. 3, pp. 705–709, 2011.
  • [39] K. Yoshida, H. Sasakura, S. Tsukui, T. Tabata, M. Adachi, R. Oshima and Y. Mizokawa, “Preparation of metastable Bi-2223 phase of Bi2(LnxCa2-x)Ca2Cu3Oz thin films (0.3≤x≤0.7, Ln=Pr, Nd, Sm, Eu and Gd),” Physica C, vol. 377, no. 1–2, pp. 101–106, 2002.
  • [40] C. Terzioglu, “Investigation of some physical properties of Gd added Bi-2223 superconductors,” Journal of Alloys and Compounds, vol. 509, no. 1, pp. 87–93, 2011.
  • [41] H. Aydın. A. Babanli, S. P. Altintas, E. Asikuzun, N. Soylu, O. Ozturk, M. Dogruer, C. Terzioglu and G. Yildirim, “Breaking point of the harmony between Gd diffused Bi-2223 slabs with diffusion annealing temperature,” Journal of Materials Science: Materials in Electronics, vol. 24, no. 11, pp. 4566–4573, 2013.
  • [42] O. Bilgili and K. Kocabas, “Effects of Gd substitution on magnetic, structural and superconducting properties of Bi1.7-xPb0.3GdxSr2Ca2Cu3Oy,” Journal of Materials Science: Materials in Electronics, vol. 26, no. 3, pp. 1700–1708, 2015.
  • [43] G. Yildirim, Y. Zalaoglu, M. Akdogan, S. P. Altintas, A. Varilci and C. Terzioglu, “Investigation of Gd Addition Added on Magnetic and Structural Properties of Bi1.8Pb0.35Sr1.9Ca2.1Cu3GdxOy Superconductors by ac Susceptibility,” Journal of Superconductivity and Novel Magnetism, vol. 24, no. 7, pp. 2153–2159, 2011.
  • [44] D. R. Mishra, “Gd-substituted Bi-2223 superconductor,” Pramana Journal of Physics, vol. 70, no. 3, pp. 535–541, 2008.
  • [45] R. Kalyanaraman, S. Oktyabrsky and J. Narayan, “The role of Ag in the pulsed laser growth of YBCO thin films,” Journal of Applied Physics, vol. 85, no. 9, pp. 6636–6641, 1999.
  • [46] F. Rullier-Albenque, P. A. Vieillefond, H. Alloul, A. W. Tyler, P. Lejay and J. F. Marucco, “Universal Tc depression by irradiation defects in underdoped and overdoped cuprates,” Europhysics Letters, vol. 50, no. 1, pp. 81–87, 2000.
  • [47] X. Xu, J. H. Kim, S. X. Dou, S. Choi, J. H. Lee, H. W. Park, M. Rindfleish and M. Tomsic, “A correlation between transport current density and grain connectivity in MgB2/Fe wire made from ball-milled boron,” Journal of Applied Physics, vol. 105, no. 10, pp. 103913, 2009.
  • [48] C. Autret-Lambert, B. Pignon, M. Gervais, I. Monot-Laffez, A. Ruyter, L. Ammor, F. Gervais, J. M. Bassat and R. Decourt, “Microstructural and transport properties in substituted Bi2Sr2CaCu2O8+delta modulated compounds,” Journal of Solid State Chemistry, vol. 179, no. 6, pp. 1698–1706, 2006.
  • [49] S. B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci and C. Terzioglu, “Effect of zirconium diffusion on the microstructural and superconducting properties of YBa2Cu3O7-delta superconductors,” Journal of Alloys And Compounds, vol. 540, pp. 260–266, 2012.
  • [50] K. Kocabas, O. Ozkan, O. Bilgili, Y. Kadıoglu and H. Yılmaz, “The Effects of Mg Substitution in Bi-2223 Superconductors,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 8, pp. 1485–1492, 2010.
  • [51] D. M. Rao, T. Somaiah, V. Haribabu and Y. C. Venudhar, “Growth-kinetics of high-Tc and low-Tc phases in Bi2-xPbxCa2Sr2Cu3Oy superconducting compounds,” Crystal Research and Technology, vol. 28, no. 3, pp. 285–298, 1993.
  • [52] A. Ianculescu, M. Gartner, B. Despax, V. Bley, R. Th Lebey and M. Modreanu Gavrila, “Optical characterization and microstructure of BaTiO3 thin films obtained by RF-magnetron sputtering,” Applied Surface Science, vol. 253, no. 1, pp. 344–348, 2006.
  • [53] A. I. Abou-Aly, S. A. Mahmoud, R. Awad and M. M. E. Barakat, “Electrical Resistivity and Magnetoresistance Studies of (Bi, Pb)-2223 Phase Substituted by Ru,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 8, pp. 1575–1588, 2010.
  • [54] R. Shabna, P. M. Sarun, S. Vinu, A. Biju and U. Syamaprasad, “Doping controlled metal to insulator transition in the (Bi, Pb)-2212 system,” Superconductor Science & Technology, vol. 22, no. 4, pp. 045016, 2009.
  • [55] S. Vinu, P. M. Sarun, R. Shabna, A. Biju and U. Syamaprasad, “Improved microstructure and flux pinning properties of Gd-substituted (Bi, Pb)-2212 superconductor sintered between 846 and 860 °C,” Materials Letters, vol. 62, no. 29, pp. 4421–4424, 2008.
  • [56] P. M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, “Highly enhanced superconducting properties of Eu-doped (Bi, Pb)-2212,” Materials Letters, vol. 62, no. 17–18, pp. 2725–2728, 2008.
  • [57] C. NguyenVanHuong, C. Hinnen and J. M. Siffre, “Superconductivity and X-ray photoelectron spectroscopy studies of Bi2Sr2-xLaxCaCu2O8+delta,” Journal of Materials Science, vol. 32, no. 7, pp. 1725–1731, 1997.
  • [58] P. M. Sarun, S. Vinu, R. Shabna, A. Biju and U. Syamaprasad, “Microstructural and superconducting properties of Yb-substituted (Bi, Pb)-2212 superconductor sintered at different temperatures,” Journal of Alloys and Compounds, vol. 472, no. 1–2, pp. 13–17, 2009.
  • [59] A. Biju, P. M. Sarun, R. P. Aloysius and U. Syamaprasad, “Flux pinning properties of Yb substituted (Bi, Pb)-2212 superconductor,” Journal of Alloys and Compounds, vol. 454, no. 1–2, pp. 46–51, 2008.
  • [60] S. Vinu, P. M. Sarun, A. Biju, R. Shabna, P. Guruswamy and U. Syamaprasad, “The effect of substitution of Eu on the critical current density and flux pinning properties of (Bi, Pb)-2212 superconductor,” Superconductor Science & Technology, vol. 21, no. 4, pp. 045001, 2008.
  • [61] H. Wang, A. Serquis, B. Maiorov, L. Civale, Q. X. Jia, P. N. Arendt, S. R. Foltyn, J.L. Macmanus-driscoll and X. Zhang, “Microstructure and transport properties of Y-rich YBa2Cu3O7-delta thin films,” Journal of Applied Physics, vol. 100, no. 5, pp. 053904, 2006.
  • [62] R. Shabna, P. M. Sarun, S. Vinu, A. Biju and U. Syamaprasad, “Charge carrier localization and metal to insulator transition in cerium substituted (Bi, Pb)-2212 superconductor,” Journal of Alloys and Compounds, vol. 493, no. 1–2, pp. 11–16, 2010.
  • [63] A. Yildiz, K. Kocabas and G. B. Akyuz, “Dependence of the Structural, Electrical and Magnetic Properties of YBa2Cu3O7-delta Bulk Superconductor on the Ag Doping,” Journal of Superconductivity and Novel Magnetism, vol. 25, no. 5, pp. 1459–1467, 2012.
  • [64] B. F. Azzouz, A. Mchirgui, B. Yangui, C. Boulesteix and B. M. Salem, “Synthesis, microstructural evolution and the role of substantial addition of PbO during the final processing of (Bi, Pb)-2223 superconductors,” Physica C, vol. 356, no. 1–2, pp. 83–96, 2001.
  • [65] M. R. Persland, J. L. Tallon, R. G. Buckley, R. S. Liu and N. E. Floer, “General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors,” Physica C, vol. 176, no. 1–3, pp. 95–105, 1991.

Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds

Yıl 2018, , 1221 - 1233, 01.10.2018
https://doi.org/10.16984/saufenbilder.344752

Öz

In this study, it is examined the significant variations in the superconducting, electrical and structural
belongings of Bi-site Gd nanoparticle substituted Bi-2223 crystal. The Bi2.0-xGdxSr2.0Ca2.1Cu3.2Oy
(0≤x≤0.3) materials obtained with the standard solid state reaction technique are characterized by dc
resistivity (ρ-T), X-ray diffraction (XRD) and transport critical current density (Jc) measurements.
Moreover, all experimental findings as regards room temperature resistivity, residual resistivity, critical
transition temperatures (


),
crystallinity, lattice constant parameters, average crystallite
size, phase fraction and strength quality of interaction between superconducting grains in the Bi-2223
ceramics declare that the structural, electrical and superconducting characteristics degrade systematically
with the ascending of the Gd substitution level in the Bi-2223 samples. Furthermore, the major reason of
the reduction trend observed especially in the electrical and superconducting features is in relation with the
hole localization problem in the Cu-O2 layers. In this regard, grain boundary weak connections, dislocations
and defects in the matrix considerably ascend with the enhancement of Gd nanoparticle substitution level.
As seen from XRD measurements, it is clearly determined that there seems to be a decrement in the Bi2223
phase with the enhancement of Gd inclusions up to the substitution amount of x=0.1. After this critical
point, new characteristics peaks of Gd2O3 appear and measurement findings rapidly diminish to the
minimum values. This substitution level emphasizes that the solubility limit of Gd is noted to be x=0.1 for
Bi-2223. Likewise, the regular decrement observed c-axis length, critical current density and grain size
favors the regular retrogression of the superconducting characteristics.

Kaynakça

  • [1] V.L. Ginzburg, E.A. Andryushin, Superconductivity, Revised ed. World Scientific Pub. Co. Inc., 2004.
  • [2] M. Hiroshi, T. Yoshiaki, F. Masao and A. Toshihisa, “A new high-Tc oxide superconductor without a rare earth element,” Japanese Journal of Applıed Physıcs Part 2-Letters, vol. 27, no. 2, pp. L209–L210, 1988.
  • [3] P. A. Lee and N. Read, “Why is Tc of the oxide superconductors so low,” Physical Review Letters, vol. 58, no. 25, pp. 2691–2694, 1987.
  • [4] K. Levin, J. H. Kim, J. P. Lu and Q. Si, “Normal state properties in the cuprates and their Fermi-liquid based interpretation,” Physica C, vol. 175, no. 5–6, pp. 449–522, 1991.
  • [5] G. Yildirim, M. Dogruer, F. Karaboga and C. Terzioglu, “Formation of nucleation centers for vortices in Bi-2223 superconducting core by dispersed Sn nanoparticles,” Journal of Alloys and Compounds, vol. 584, pp. 344–351, 2014.
  • [6] O. Gorur, C. Terzioglu, A. Varilci and M. Altunbas, “Investigation of some physical properties of silver diffusion-doped YBa2Cu3O7-x superconductors,” Superconductor Science & Technology, vol. 18, no. 9, pp. 1233–1237, 2005.
  • [7] M. B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci and G. Yildirim, “Investigation of Lu effect on YBa2Cu3O7-delta superconducting compounds,” Journal of Materials Science-Materials In Electronics, vol. 24, no. 3, pp. 896–905, 2013.
  • [8] Y. Zalaoglu, G. Yildirim, C. Terzioglu and O. Gorur, “Detailed analysis on electrical conduction transition from 2D variable range hopping to phonon-assisted 3D VRH mechanism belonging to Bi-site La substituted Bi-2212 system,” Journal of Alloys and Compounds, vol. 622, pp. 489–499, 2015.
  • [9] A. I. Abou-Aly, M. M. H. Abdel Gawad and R. Awad, “Improving the physical properties of (Bi, Pb)-2223 phase by SnO2 nano-particles addition,” Journal of Superconductivity and Novel Magnetism, vol. 24, no. 7, pp. 2077–2084, 2011.
  • [10] M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda, Y. Tomii and H. Mazaki, “High-Tc phase promoted and stabilized in the Bi, Pb-Sr-Ca-Cu-O system,” Japanese Journal of Applied Physics Part 2-Letters, vol. 27, no. 6, pp. L1041–L1043, 1988.
  • [11] C. Y. Shieh, Y. Huang, M. K. Wu and C. Y. Huang, “Preparation of single high-Tc phase Bi-Pb-Sr-Ca-Cu-O superconductor by the EDTA precursor solution method,” Physica C, vol. 185–189, pp. 513–514, 1991.
  • [12] S. A. Halim, A. K. Saleh, H. Azhan, S. B. Mohamed, K. Khalid and J. Suradi, “Synthesis of Bi1.5Pb0.5Sr2Ca2Cu3Oy via sol-gel method using different acetate-derived precursors,” Journal of Materials Science, vol. 35, no. 12, pp. 3043–3046, 2000.
  • [13] A. Tampieri, G. Celotti, S. Lesca, G. Bezzi, T. M. G. la Torretta and G. Magnani, “Bi(Pb)-Sr-Ca-Cu-O(2223) superconductor prepared by improved sol-gel technique,” Journal of the European Ceramic Society, vol. 20, no. 2, pp. 119–126, 2000.
  • [14] I. Hamadneh, A. Agil, A. K. Yahya and S. A. Halim, “Superconducting properties of bulk Bi1.6Pb0.4Sr2Ca2-xCdxCu3O10 system prepared via conventional solid state and coprecipitation methods,” Physica C, vol. 463–465, pp. 207–210, 2007.
  • [15] E. Yanmaz, I. H. Mutlu, S. Nezir and M. Altunbas, “Magnetic field dependence of samples of nominal composition Bi1.6Pb0.4Sr2Ca3Cu4Oy(2234) prepared by various techniques,” Journal of Alloys and Compounds, vol. 239, no. 2, pp. 142–146, 1996.
  • [16] H. B. Huang, G. F. de la Fuente, A. Sotelo, M. T. Ruiz, A. Larrea, L. A. Angurel and R. Navarro, “Ag/(Bi, Pb)-Sr-Ca-Cu-O superconducting tape processing-solid-state chemistry aspects,” Solid State Ionics, vol. 63–65, pp. 889–896, 1993.
  • [17] N. Ghanzanfari, A. Kılıç, A. Gencer and H. Ozkan, “Effects of Nb2O5 addition on superconducting properties of BSCCO,” Solid State Communications, vol. 144, no. 5–6, pp. 210–214, 2007.
  • [18] W. Zhu and P.S. Nicholson, “Atmosphere- temperature-time relationships for the formation of 110 K phase in the Bi-Pb-Sr-Ca-Cu-O superconductor system,” Applıed Physics Letters, vol. 61, no. 6, pp. 717–719, 1992.
  • [19] M. Borik, M. Chernikov, I. Dubov, V. Osiko, V. Veselago, Y. Yakowets and V. Stepankin, “Synthesis conditions superconduction properties of ceramic in the (Bi,Pb)-Sr-Ca-Cu-O system,” Superconductor Science & Technology, vol. 5, no. 3, pp. 151–155, 1992.
  • [20] R. Mawassi, S. Marhaba, M. Roumié, R. Awad, M. Korek and I. Hassan, “Improvement of Superconducting Parameters of Bi1.8Pb0.4Sr2Ca2Cu3O10+δ Added with Nano-Ag,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 5, 1131–1142, 2014.
  • [21] M. Roumié, S. Marhaba, R. Awad, M. Kork, I. Hassan and R. Mawassi, “Effect of Fe2O3 Nano-Oxide Addition on the Superconducting Properties of the (Bi, Pb)-2223 Phase,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 1, pp. 143–153, 2014.
  • [22] F. Saad Oboudi, “Synthesis and magnetic properties of Bi1.7Pb0.3Sr2Ca2Cu3O10+delta added with nano Y,” Journal of Superconductivity and Novel Magnetism, vol. 30, no. 6, pp. 1473–1482, 2017.
  • [23] N. A. A. Yahya, A. Al-Sharabi, N. Raihan Mohd Suib, W. S. Chiu and R. Abd-Shukor, “Enhanced transport critical current density of (Bi,Pb)-2223/Ag superconductor tapes added with nano-sized Bi2O3,” Ceramics International, vol. 42, no. 16, pp. 18347–18351, 2016.
  • [24] S. Yavuz, O. Bilgili and K. Kocabas, “Effects of superconducting parameters of SnO2 nanoparticles addition on (Bi, Pb)-2223 phase,” Journal of Materials Science-Materials In Electronics, vol. 27, no. 5, pp. 4526–4533, 2016.
  • [25] H. Bagiah, S. A. Halim, S. K. Chen, K. P. Lim, and M. M. Awang Kechik, “Effects of rare earth nanoparticles (M=Sm2O3, Ho2O3, Nd2O3) addition on the microstructure and superconducting transition of Bi1.6Pb0.4Sr2Ca2Cu3O10+delta ceramics,” Sains Malaysiana, vol. 45, no. 4, pp. 643–651, 2016.
  • [26] E. Akdemir, M. Pakdil, H. Bilge, M. F. Kahraman, E. Bekiroglu, G. Yildirim, Y. Zalaoglu, E. Doruk and M. Oz, “Degeneration of mechanical characteristics and performances with Zr nanoparticles inserted in Bi-2223 superconducting matrix and increment in dislocation movement and cracks propagation,” Journal of Materials Science-Materials In Electronics, vol. 27, no. 3, pp. 2276–2287, 2016.
  • [27] S. E. Mousavi Ghahfarokhi, N. Manhoush and I. Kazeminezhad, “The role of PbO nanoparticles doping on the stability of Bi-2223 phase in Bi2-xPbxSr2Ca2Cu4Oy compounds,” Journal of Superconductivity and Novel Magnetism, vol. 29, no. 1, pp. 33–39, 2016.
  • [28] U. Oztornaci and B. Ozkurt, “The effect of nano-sized metallic Au addition on structural and magnetic properties of Bi1.8Sr2AuxCa1.1Cu2.1Oy (Bi-2212) ceramics,” Ceramics International, vol. 43, no. 5, pp. 4545–4550, 2017.
  • [29] B. Akkurt and G. Yıldırım, “Change of mechanical performance and characterization with replacement of Ca by Gd nanoparticles in Bi-2212 system and suppression of durable tetragonal phase by Gd,” Journal of Materials Science: Materials in Electronics, vol. 27, no. 12, pp. 13034–13043, 2016.
  • [30] N. K. Saritekin, M. Pakdil, G. Yildirim, M. Oz and T. Turgay, “Decrement in metastability with Zr nanoparticles inserted in Bi-2223 superconducting system and working principle of hybridization mechanism,” Journal of Materials Science: Materials in Electronics, vol. 27, no. 1, pp. 956–965, 2016.
  • [31] A. Zelati, A. Amirabadizadeh, A. Kompany, H. Salamati and J. Sonier, “Critical current density and intergranular coupling study of the dysprosium oxide nanoparticle added Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductor,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 10, pp. 2185–2193, 2014.
  • [32] N. A. A. Yahya and R. Abd-Shukor, “Effect of different nanosized MgO on the transport critical current density of Bi1.6Pb0.4Sr2Ca2Cu3O10 superconductor,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 2, pp. 329–335, 2014.
  • [33] A. Agail and R. Abd-Shukor, “Transport current density of (Bi1.6Pb0.4)Sr2Ca2Cu3O10 superconductor added with different nano-sized ZnO,” Applied Physics A-Materials Science & Processing, vol. 112, no. 2, pp. 501–506, 2013.
  • [34] W. Kong and R. Abd-Shukor, “Enhanced electrical transport properties of nano NiFe2O4-added (Bi1.6Pb0.4)Sr2Ca2Cu3O10 superconductor,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 2, pp. 257–263, 2010.
  • [35] H. Aydin, O. Cakiroglu, M. Nursoy and C. Terzioglu, “Mechanical and Superconducting Properties of the Bi1.8Pb0.35Sr1.9Ca2.1Cu3GdxOy System,” Chinese Journal of Physics, vol. 47, no. 2, pp. 192–206, 2009.
  • [36] L. Bonoldi, G. L. Calestani, M. G. Francesconi, G. Salsi, M. Sparpaglione and L. Zini, “Structural stability of bismuth-based superconductors under heterovalent substitution,” Physica C, vol. 241, no. 1–2, 37–44, 1995.
  • [37] C. Terzioglu, H. Aydin, O. Ozturk, E. Bekiroglu and I. Belenli, “The influence of Gd addition on microstructure and transport properties of Bi-2223,” Physica B, vol. 403, no. 19–20, pp. 3354–3359, 2008.
  • [38] M. Erdem, O. Ozturk, E. Yucel, S. P. Altintas, A. Varilci, C. Terzioglu and I. Belenli, Effect of Gd addition on the activation energies of Bi-2223 superconductor, Physica B, vol. 406, no. 3, pp. 705–709, 2011.
  • [39] K. Yoshida, H. Sasakura, S. Tsukui, T. Tabata, M. Adachi, R. Oshima and Y. Mizokawa, “Preparation of metastable Bi-2223 phase of Bi2(LnxCa2-x)Ca2Cu3Oz thin films (0.3≤x≤0.7, Ln=Pr, Nd, Sm, Eu and Gd),” Physica C, vol. 377, no. 1–2, pp. 101–106, 2002.
  • [40] C. Terzioglu, “Investigation of some physical properties of Gd added Bi-2223 superconductors,” Journal of Alloys and Compounds, vol. 509, no. 1, pp. 87–93, 2011.
  • [41] H. Aydın. A. Babanli, S. P. Altintas, E. Asikuzun, N. Soylu, O. Ozturk, M. Dogruer, C. Terzioglu and G. Yildirim, “Breaking point of the harmony between Gd diffused Bi-2223 slabs with diffusion annealing temperature,” Journal of Materials Science: Materials in Electronics, vol. 24, no. 11, pp. 4566–4573, 2013.
  • [42] O. Bilgili and K. Kocabas, “Effects of Gd substitution on magnetic, structural and superconducting properties of Bi1.7-xPb0.3GdxSr2Ca2Cu3Oy,” Journal of Materials Science: Materials in Electronics, vol. 26, no. 3, pp. 1700–1708, 2015.
  • [43] G. Yildirim, Y. Zalaoglu, M. Akdogan, S. P. Altintas, A. Varilci and C. Terzioglu, “Investigation of Gd Addition Added on Magnetic and Structural Properties of Bi1.8Pb0.35Sr1.9Ca2.1Cu3GdxOy Superconductors by ac Susceptibility,” Journal of Superconductivity and Novel Magnetism, vol. 24, no. 7, pp. 2153–2159, 2011.
  • [44] D. R. Mishra, “Gd-substituted Bi-2223 superconductor,” Pramana Journal of Physics, vol. 70, no. 3, pp. 535–541, 2008.
  • [45] R. Kalyanaraman, S. Oktyabrsky and J. Narayan, “The role of Ag in the pulsed laser growth of YBCO thin films,” Journal of Applied Physics, vol. 85, no. 9, pp. 6636–6641, 1999.
  • [46] F. Rullier-Albenque, P. A. Vieillefond, H. Alloul, A. W. Tyler, P. Lejay and J. F. Marucco, “Universal Tc depression by irradiation defects in underdoped and overdoped cuprates,” Europhysics Letters, vol. 50, no. 1, pp. 81–87, 2000.
  • [47] X. Xu, J. H. Kim, S. X. Dou, S. Choi, J. H. Lee, H. W. Park, M. Rindfleish and M. Tomsic, “A correlation between transport current density and grain connectivity in MgB2/Fe wire made from ball-milled boron,” Journal of Applied Physics, vol. 105, no. 10, pp. 103913, 2009.
  • [48] C. Autret-Lambert, B. Pignon, M. Gervais, I. Monot-Laffez, A. Ruyter, L. Ammor, F. Gervais, J. M. Bassat and R. Decourt, “Microstructural and transport properties in substituted Bi2Sr2CaCu2O8+delta modulated compounds,” Journal of Solid State Chemistry, vol. 179, no. 6, pp. 1698–1706, 2006.
  • [49] S. B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci and C. Terzioglu, “Effect of zirconium diffusion on the microstructural and superconducting properties of YBa2Cu3O7-delta superconductors,” Journal of Alloys And Compounds, vol. 540, pp. 260–266, 2012.
  • [50] K. Kocabas, O. Ozkan, O. Bilgili, Y. Kadıoglu and H. Yılmaz, “The Effects of Mg Substitution in Bi-2223 Superconductors,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 8, pp. 1485–1492, 2010.
  • [51] D. M. Rao, T. Somaiah, V. Haribabu and Y. C. Venudhar, “Growth-kinetics of high-Tc and low-Tc phases in Bi2-xPbxCa2Sr2Cu3Oy superconducting compounds,” Crystal Research and Technology, vol. 28, no. 3, pp. 285–298, 1993.
  • [52] A. Ianculescu, M. Gartner, B. Despax, V. Bley, R. Th Lebey and M. Modreanu Gavrila, “Optical characterization and microstructure of BaTiO3 thin films obtained by RF-magnetron sputtering,” Applied Surface Science, vol. 253, no. 1, pp. 344–348, 2006.
  • [53] A. I. Abou-Aly, S. A. Mahmoud, R. Awad and M. M. E. Barakat, “Electrical Resistivity and Magnetoresistance Studies of (Bi, Pb)-2223 Phase Substituted by Ru,” Journal of Superconductivity and Novel Magnetism, vol. 23, no. 8, pp. 1575–1588, 2010.
  • [54] R. Shabna, P. M. Sarun, S. Vinu, A. Biju and U. Syamaprasad, “Doping controlled metal to insulator transition in the (Bi, Pb)-2212 system,” Superconductor Science & Technology, vol. 22, no. 4, pp. 045016, 2009.
  • [55] S. Vinu, P. M. Sarun, R. Shabna, A. Biju and U. Syamaprasad, “Improved microstructure and flux pinning properties of Gd-substituted (Bi, Pb)-2212 superconductor sintered between 846 and 860 °C,” Materials Letters, vol. 62, no. 29, pp. 4421–4424, 2008.
  • [56] P. M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, “Highly enhanced superconducting properties of Eu-doped (Bi, Pb)-2212,” Materials Letters, vol. 62, no. 17–18, pp. 2725–2728, 2008.
  • [57] C. NguyenVanHuong, C. Hinnen and J. M. Siffre, “Superconductivity and X-ray photoelectron spectroscopy studies of Bi2Sr2-xLaxCaCu2O8+delta,” Journal of Materials Science, vol. 32, no. 7, pp. 1725–1731, 1997.
  • [58] P. M. Sarun, S. Vinu, R. Shabna, A. Biju and U. Syamaprasad, “Microstructural and superconducting properties of Yb-substituted (Bi, Pb)-2212 superconductor sintered at different temperatures,” Journal of Alloys and Compounds, vol. 472, no. 1–2, pp. 13–17, 2009.
  • [59] A. Biju, P. M. Sarun, R. P. Aloysius and U. Syamaprasad, “Flux pinning properties of Yb substituted (Bi, Pb)-2212 superconductor,” Journal of Alloys and Compounds, vol. 454, no. 1–2, pp. 46–51, 2008.
  • [60] S. Vinu, P. M. Sarun, A. Biju, R. Shabna, P. Guruswamy and U. Syamaprasad, “The effect of substitution of Eu on the critical current density and flux pinning properties of (Bi, Pb)-2212 superconductor,” Superconductor Science & Technology, vol. 21, no. 4, pp. 045001, 2008.
  • [61] H. Wang, A. Serquis, B. Maiorov, L. Civale, Q. X. Jia, P. N. Arendt, S. R. Foltyn, J.L. Macmanus-driscoll and X. Zhang, “Microstructure and transport properties of Y-rich YBa2Cu3O7-delta thin films,” Journal of Applied Physics, vol. 100, no. 5, pp. 053904, 2006.
  • [62] R. Shabna, P. M. Sarun, S. Vinu, A. Biju and U. Syamaprasad, “Charge carrier localization and metal to insulator transition in cerium substituted (Bi, Pb)-2212 superconductor,” Journal of Alloys and Compounds, vol. 493, no. 1–2, pp. 11–16, 2010.
  • [63] A. Yildiz, K. Kocabas and G. B. Akyuz, “Dependence of the Structural, Electrical and Magnetic Properties of YBa2Cu3O7-delta Bulk Superconductor on the Ag Doping,” Journal of Superconductivity and Novel Magnetism, vol. 25, no. 5, pp. 1459–1467, 2012.
  • [64] B. F. Azzouz, A. Mchirgui, B. Yangui, C. Boulesteix and B. M. Salem, “Synthesis, microstructural evolution and the role of substantial addition of PbO during the final processing of (Bi, Pb)-2223 superconductors,” Physica C, vol. 356, no. 1–2, pp. 83–96, 2001.
  • [65] M. R. Persland, J. L. Tallon, R. G. Buckley, R. S. Liu and N. E. Floer, “General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors,” Physica C, vol. 176, no. 1–3, pp. 95–105, 1991.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Yusuf Zalaoğlu

Yayımlanma Tarihi 1 Ekim 2018
Gönderilme Tarihi 17 Ekim 2017
Kabul Tarihi 12 Aralık 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Zalaoğlu, Y. (2018). Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds. Sakarya University Journal of Science, 22(5), 1221-1233. https://doi.org/10.16984/saufenbilder.344752
AMA Zalaoğlu Y. Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds. SAUJS. Ekim 2018;22(5):1221-1233. doi:10.16984/saufenbilder.344752
Chicago Zalaoğlu, Yusuf. “Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds”. Sakarya University Journal of Science 22, sy. 5 (Ekim 2018): 1221-33. https://doi.org/10.16984/saufenbilder.344752.
EndNote Zalaoğlu Y (01 Ekim 2018) Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds. Sakarya University Journal of Science 22 5 1221–1233.
IEEE Y. Zalaoğlu, “Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds”, SAUJS, c. 22, sy. 5, ss. 1221–1233, 2018, doi: 10.16984/saufenbilder.344752.
ISNAD Zalaoğlu, Yusuf. “Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds”. Sakarya University Journal of Science 22/5 (Ekim 2018), 1221-1233. https://doi.org/10.16984/saufenbilder.344752.
JAMA Zalaoğlu Y. Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds. SAUJS. 2018;22:1221–1233.
MLA Zalaoğlu, Yusuf. “Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds”. Sakarya University Journal of Science, c. 22, sy. 5, 2018, ss. 1221-33, doi:10.16984/saufenbilder.344752.
Vancouver Zalaoğlu Y. Determination of Solubility Characteristic of (Bi, Gd) Substitution in Bi-2223 Inorganic Compounds. SAUJS. 2018;22(5):1221-33.

Cited By

A VALUABLE VIEW ON EVALUATION OF GENERAL MECHANICAL PERFORMANCES PERTAINING TO Bi-2223 SUPERCONDUCTING CERAMICS WITH VANADIUM ADDITION
Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering
Uğur SOYKAN
https://doi.org/10.18038/estubtda.818346

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.