Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, , 1432 - 1437, 01.10.2018
https://doi.org/10.16984/saufenbilder.417516

Öz

Kaynakça

  • I. Cayiroglu, R. Kilic, Wing aerodynamic optimization by using genetic algoritm and Ansys, Acta Phys. Pol. A. 132 (2017) 981–985. doi:10.12693/APhysPolA.132.981.
  • K.Y. Maalawi, M.T.S. Badawy, A direct method for evaluating performance of horizontal axis wind turbines, Renew. Sustain. Energy Rev. 5 (2001) 175–190. doi:10.1016/S1364-0321(00)00017-4.
  • Y. Wang, S. Shen, G. Li, D. Huang, Z. Zheng, Investigation on Aerodynamic Performance of Vertical Axis Wind Turbine with Different Series Airfoil Shapes, Renew. Energy. (2018). doi:10.1016/j.renene.2018.02.095.
  • A. Erişen, M. Bakirci, NACA 0012 VE NACA 4412 Kanat Kesitlerinin Yeniden Tasarlanarak Had ile Analiz Edilmesi, J. Eng. Technol. Sci. (n.d.) 50–82.
  • S.B. Qamar, I. Janajreh, Investigation of Effect of Cambered Blades on Darrieus VAWTs, Energy Procedia. 105 (2017) 537–543. doi:10.1016/j.egypro.2017.03.353.
  • M. Jureczko, M. Pawlak, A. Mężyk, Optimisation of wind turbine blades, J. Mater. Process. Technol. 167 (2005) 463–471. doi:10.1016/j.jmatprotec.2005.06.055.
  • A. Meana-Fernández, I. Solís-Gallego, J.M. Fernández Oro, K.M. Argüelles Díaz, S. Velarde-Suárez, Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs, Energy. 147 (2018) 504–517. doi:10.1016/j.energy.2018.01.062.
  • W. Xudong, W.Z. Shen, W.J. Zhu, J.N. Sørensen, C. Jin, Shape optimization of wind turbine blades, Wind Energy. 12 (2009) 781–803. doi:10.1002/we.335.
  • Y. Liang, X.Q. Cheng, Z.N. Li, J.W. Xiang, Robust multi-objective wing design optimization via CFD approximation model, Eng. Appl. Comput. Fluid Mech. 5 (2011) 286–300. doi:10.1080/19942060.2011.11015371.
  • A. Varol, C. İlkılıç, Y. Varol, Increasing the efficiency of wind turbines, J. Wind Eng. Ind. Aerodyn. 89 (2001) 809–815. doi:10.1016/S0167-6105(01)00069-1.
  • T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. doi:10.1016/j.cma.2004.10.008.
  • E. Benini, A. Toffolo, Optimal Design of Horizontal-Axis Wind Turbines Using Blade-Element Theory and Evolutionary Computation, J. Sol. Energy Eng. 124 (2002) 357. doi:10.1115/1.1510868.
  • X. Liu, Y. Chen, Z. Ye, Optimization model for rotor blades of horizontal axis wind turbines, Front. Mech. Eng. China. 2 (2007) 483–488. doi:10.1007/s11465-007-0084-9.
  • K. Kishinami, H. Taniguchi, J. Suzuki, H. Ibano, T. Kazunou, M. Turuhami, Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine, in: Energy, 2005: pp. 2089–2100. doi:10.1016/j.energy.2004.08.015.
  • M. Guleren, S. Demir, Rüzgar türbinleri için düşük hücum açılarında farklı kanat profillerinin performans analizi, Isı Bilim. ve Tek. Derg. 31 (2011) 51–59.
  • L. Bermudez, A. Velázquez, A. Matesanz, Numerical simulation of unsteady aerodynamics effects in horizontal-axis wind turbines, Sol. Energy. 68 (2000) 9–21. doi:10.1016/S0038-092X(99)00056-0.
  • Halbes Inc., (n.d.). http://halbes.com/urun-ve-hizmetler/ruzgar-turbinleri/50-kw-ruzgar-turbinleri/.
  • W.-C. Weng, F. Yang, A. Elsherbeni, Electromagnetics and Antenna Optimization Using Taguchi’s Method, 2007. doi:10.2200/S00083ED1V01Y200710CEM018.

Improving The Horizontal Axis Wind Turbine Blade Profiles

Yıl 2018, , 1432 - 1437, 01.10.2018
https://doi.org/10.16984/saufenbilder.417516

Öz

Due
to greenhouse gases, we feel the effects of global warming more and more every
day, so we need far more efficient Horizontal Axis Wind Turbines (HAWTs). This
study was carried out to develop turbine blades with higher momentum
coefficient (Cm) for the HAWTs. For this purpose, the blade profile that has
higher performance was improved using Taguchi and Computational Fluid Dynamics
(CFD) methods. With reference to the NACA 0012 profile, changing the upper and
lower cambers of the profile derived the new blade profiles. Using the Taguchi
method, the optimum blade profile with a maximum Cm coefficient was obtained.
After the profile to be used on the turbine blades is determined, the blades
are designed with the Blade Element Momentum (BEM) theory. A 3-dimensional
model for the HAWTs is developed using ANSYSv.16.2/Fluent Software. CFD
analyses were performed using a sliding mesh approach to get more realistic and
reliable results and to gain more knowledge of the performance. Numerical
analysis results show that power coefficient (Cp) of the optimum profile is
increased by 7.42% according to the NACA 0012 profile.

Kaynakça

  • I. Cayiroglu, R. Kilic, Wing aerodynamic optimization by using genetic algoritm and Ansys, Acta Phys. Pol. A. 132 (2017) 981–985. doi:10.12693/APhysPolA.132.981.
  • K.Y. Maalawi, M.T.S. Badawy, A direct method for evaluating performance of horizontal axis wind turbines, Renew. Sustain. Energy Rev. 5 (2001) 175–190. doi:10.1016/S1364-0321(00)00017-4.
  • Y. Wang, S. Shen, G. Li, D. Huang, Z. Zheng, Investigation on Aerodynamic Performance of Vertical Axis Wind Turbine with Different Series Airfoil Shapes, Renew. Energy. (2018). doi:10.1016/j.renene.2018.02.095.
  • A. Erişen, M. Bakirci, NACA 0012 VE NACA 4412 Kanat Kesitlerinin Yeniden Tasarlanarak Had ile Analiz Edilmesi, J. Eng. Technol. Sci. (n.d.) 50–82.
  • S.B. Qamar, I. Janajreh, Investigation of Effect of Cambered Blades on Darrieus VAWTs, Energy Procedia. 105 (2017) 537–543. doi:10.1016/j.egypro.2017.03.353.
  • M. Jureczko, M. Pawlak, A. Mężyk, Optimisation of wind turbine blades, J. Mater. Process. Technol. 167 (2005) 463–471. doi:10.1016/j.jmatprotec.2005.06.055.
  • A. Meana-Fernández, I. Solís-Gallego, J.M. Fernández Oro, K.M. Argüelles Díaz, S. Velarde-Suárez, Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs, Energy. 147 (2018) 504–517. doi:10.1016/j.energy.2018.01.062.
  • W. Xudong, W.Z. Shen, W.J. Zhu, J.N. Sørensen, C. Jin, Shape optimization of wind turbine blades, Wind Energy. 12 (2009) 781–803. doi:10.1002/we.335.
  • Y. Liang, X.Q. Cheng, Z.N. Li, J.W. Xiang, Robust multi-objective wing design optimization via CFD approximation model, Eng. Appl. Comput. Fluid Mech. 5 (2011) 286–300. doi:10.1080/19942060.2011.11015371.
  • A. Varol, C. İlkılıç, Y. Varol, Increasing the efficiency of wind turbines, J. Wind Eng. Ind. Aerodyn. 89 (2001) 809–815. doi:10.1016/S0167-6105(01)00069-1.
  • T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. doi:10.1016/j.cma.2004.10.008.
  • E. Benini, A. Toffolo, Optimal Design of Horizontal-Axis Wind Turbines Using Blade-Element Theory and Evolutionary Computation, J. Sol. Energy Eng. 124 (2002) 357. doi:10.1115/1.1510868.
  • X. Liu, Y. Chen, Z. Ye, Optimization model for rotor blades of horizontal axis wind turbines, Front. Mech. Eng. China. 2 (2007) 483–488. doi:10.1007/s11465-007-0084-9.
  • K. Kishinami, H. Taniguchi, J. Suzuki, H. Ibano, T. Kazunou, M. Turuhami, Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine, in: Energy, 2005: pp. 2089–2100. doi:10.1016/j.energy.2004.08.015.
  • M. Guleren, S. Demir, Rüzgar türbinleri için düşük hücum açılarında farklı kanat profillerinin performans analizi, Isı Bilim. ve Tek. Derg. 31 (2011) 51–59.
  • L. Bermudez, A. Velázquez, A. Matesanz, Numerical simulation of unsteady aerodynamics effects in horizontal-axis wind turbines, Sol. Energy. 68 (2000) 9–21. doi:10.1016/S0038-092X(99)00056-0.
  • Halbes Inc., (n.d.). http://halbes.com/urun-ve-hizmetler/ruzgar-turbinleri/50-kw-ruzgar-turbinleri/.
  • W.-C. Weng, F. Yang, A. Elsherbeni, Electromagnetics and Antenna Optimization Using Taguchi’s Method, 2007. doi:10.2200/S00083ED1V01Y200710CEM018.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Cemil Yiğit 0000-0003-0908-2148

Yayımlanma Tarihi 1 Ekim 2018
Gönderilme Tarihi 20 Nisan 2018
Kabul Tarihi 14 Mayıs 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Yiğit, C. (2018). Improving The Horizontal Axis Wind Turbine Blade Profiles. Sakarya University Journal of Science, 22(5), 1432-1437. https://doi.org/10.16984/saufenbilder.417516
AMA Yiğit C. Improving The Horizontal Axis Wind Turbine Blade Profiles. SAUJS. Ekim 2018;22(5):1432-1437. doi:10.16984/saufenbilder.417516
Chicago Yiğit, Cemil. “Improving The Horizontal Axis Wind Turbine Blade Profiles”. Sakarya University Journal of Science 22, sy. 5 (Ekim 2018): 1432-37. https://doi.org/10.16984/saufenbilder.417516.
EndNote Yiğit C (01 Ekim 2018) Improving The Horizontal Axis Wind Turbine Blade Profiles. Sakarya University Journal of Science 22 5 1432–1437.
IEEE C. Yiğit, “Improving The Horizontal Axis Wind Turbine Blade Profiles”, SAUJS, c. 22, sy. 5, ss. 1432–1437, 2018, doi: 10.16984/saufenbilder.417516.
ISNAD Yiğit, Cemil. “Improving The Horizontal Axis Wind Turbine Blade Profiles”. Sakarya University Journal of Science 22/5 (Ekim 2018), 1432-1437. https://doi.org/10.16984/saufenbilder.417516.
JAMA Yiğit C. Improving The Horizontal Axis Wind Turbine Blade Profiles. SAUJS. 2018;22:1432–1437.
MLA Yiğit, Cemil. “Improving The Horizontal Axis Wind Turbine Blade Profiles”. Sakarya University Journal of Science, c. 22, sy. 5, 2018, ss. 1432-7, doi:10.16984/saufenbilder.417516.
Vancouver Yiğit C. Improving The Horizontal Axis Wind Turbine Blade Profiles. SAUJS. 2018;22(5):1432-7.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.