Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 1162 - 1170, 01.12.2020
https://doi.org/10.16984/saufenbilder.687708

Öz

Kaynakça

  • A. F. Horadam, “Basic Properties of a certain generalized Squence of Numbers”, Fibonacci Quarterly, pp. 161-176, 1965.
  • A. F. Horadam, “Special Properties of the Sequence {Wn(a,b;p,q)}”, Fibonacci Quarterly, vol. 5, pp. 424-434, 1967.
  • A. F. Horadam, “Tschebyscheff and Other Functions Associated with the Sequence”, Fibonacci Quarterly, vol. 7, no. 1, pp. 14-22, 1969.
  • A. F. Horadam, “Jacobsthal representation numbers”, The Fibonacci Quarterly, vol. 37, no. 2, pp. 40-54, 1996.
  • T. Koshy, “Fibonacci and Lucas Numbers with Applications”, John Wiley and Sons Inc., NY 2001.
  • G. Udrea, “A note on Sequence of A. F. Horadam,” Portugalia Mathematica, vol. 53, no. 24, pp. 143-144, 1996.
  • T. Mansour, “A formula for the generating functions of powers of Horadam sequence”, Australasian Journal of Combinatorics, vol. 30, pp, 207-212, 2004.
  • T. Horzum and E. G. Kocer, “On Some Properties of Horadam Polynomials”, Int math. Forum, vol. 4, no. 25-28, pp. 1243-1252, 2009.
  • E. Kilic and E Tan, “On Binomial Sums for the General Second Order Linear Recurrence”, Integers Electronic Journal of Combnatorial Number Theory, vol. 10, pp. 801-806, 2010.
  • N. Taskara, K.Uslu, Y. Yazlık and N. Yılmaz “The Construction of Horadam Numbers in Terms of the Determinant of Tridioganal Matrices”, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, vol. 1389, pp. 367-370, 2011.
  • C. K. Ho and C. Y. Chong, “Odd and even sums of generalized Fibonacci numbers by matrix methods”. Am. Inst. Phys. Conf. Ser., vol. 1602, pp. 1026-1032, 2014.
  • S. P. Jun and K. H. Choi, “Some properties of the Generalized Fibonacci Sequence by Matrix Methods”, Korean J. Math, vol. 24, no. 4, pp. 681-691, 2016.
  • S. Uygun, “The (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequences”, Applied Mathematical Sciences, vol. 9, no. 7, pp. 3467-3476, 2015.
  • S. Uygun, “The Combinatorial Representation of Jacobsthal and Jacobsthal Lucas Matrix Sequences”, Ars Combinatoria, vol. 135, pp. 83-92, 2017.
  • S. Uygun, “A New Generalization for Jacobsthal and Jacobsthal Lucas Sequences”, Asian Journal of Mathematics and Physics, vol. 2, no. 1, pp. 14-21, 2018.
  • G. Udrea, “A Problem of Diophantos-Fermat and Chebyshev polynomials of the second kind”, Portugalia Mathematica, vol. 52, pp. 301-304, 1995.

The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences

Yıl 2020, , 1162 - 1170, 01.12.2020
https://doi.org/10.16984/saufenbilder.687708

Öz

In this paper Jacobsthal, Jacobsthal Lucas and generalized Jacobsthal sequences are denoted by aid of first or second type of Chebyshev polynomials by different equalities. Then using these equalities a relation is obtained between Jacobsthal and generalized Jacobsthal numbers. Moreever, the nth powers of some special matrices are found by using Jacobsthal numbers or Chebyshev polynomials. Some connections among Jacobsthal, Jacobsthal Lucas are revealed by using the determinant of the power of some special matrices. Then, the properties of Jacobsthal, Jacobsthal Lucas numbers are obtained by using the identities of Chebyshev polynomials.

Kaynakça

  • A. F. Horadam, “Basic Properties of a certain generalized Squence of Numbers”, Fibonacci Quarterly, pp. 161-176, 1965.
  • A. F. Horadam, “Special Properties of the Sequence {Wn(a,b;p,q)}”, Fibonacci Quarterly, vol. 5, pp. 424-434, 1967.
  • A. F. Horadam, “Tschebyscheff and Other Functions Associated with the Sequence”, Fibonacci Quarterly, vol. 7, no. 1, pp. 14-22, 1969.
  • A. F. Horadam, “Jacobsthal representation numbers”, The Fibonacci Quarterly, vol. 37, no. 2, pp. 40-54, 1996.
  • T. Koshy, “Fibonacci and Lucas Numbers with Applications”, John Wiley and Sons Inc., NY 2001.
  • G. Udrea, “A note on Sequence of A. F. Horadam,” Portugalia Mathematica, vol. 53, no. 24, pp. 143-144, 1996.
  • T. Mansour, “A formula for the generating functions of powers of Horadam sequence”, Australasian Journal of Combinatorics, vol. 30, pp, 207-212, 2004.
  • T. Horzum and E. G. Kocer, “On Some Properties of Horadam Polynomials”, Int math. Forum, vol. 4, no. 25-28, pp. 1243-1252, 2009.
  • E. Kilic and E Tan, “On Binomial Sums for the General Second Order Linear Recurrence”, Integers Electronic Journal of Combnatorial Number Theory, vol. 10, pp. 801-806, 2010.
  • N. Taskara, K.Uslu, Y. Yazlık and N. Yılmaz “The Construction of Horadam Numbers in Terms of the Determinant of Tridioganal Matrices”, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, vol. 1389, pp. 367-370, 2011.
  • C. K. Ho and C. Y. Chong, “Odd and even sums of generalized Fibonacci numbers by matrix methods”. Am. Inst. Phys. Conf. Ser., vol. 1602, pp. 1026-1032, 2014.
  • S. P. Jun and K. H. Choi, “Some properties of the Generalized Fibonacci Sequence by Matrix Methods”, Korean J. Math, vol. 24, no. 4, pp. 681-691, 2016.
  • S. Uygun, “The (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequences”, Applied Mathematical Sciences, vol. 9, no. 7, pp. 3467-3476, 2015.
  • S. Uygun, “The Combinatorial Representation of Jacobsthal and Jacobsthal Lucas Matrix Sequences”, Ars Combinatoria, vol. 135, pp. 83-92, 2017.
  • S. Uygun, “A New Generalization for Jacobsthal and Jacobsthal Lucas Sequences”, Asian Journal of Mathematics and Physics, vol. 2, no. 1, pp. 14-21, 2018.
  • G. Udrea, “A Problem of Diophantos-Fermat and Chebyshev polynomials of the second kind”, Portugalia Mathematica, vol. 52, pp. 301-304, 1995.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Şükran Uygun 0000-0002-7878-2175

Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 11 Şubat 2020
Kabul Tarihi 29 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Uygun, Ş. (2020). The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences. Sakarya University Journal of Science, 24(6), 1162-1170. https://doi.org/10.16984/saufenbilder.687708
AMA Uygun Ş. The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences. SAUJS. Aralık 2020;24(6):1162-1170. doi:10.16984/saufenbilder.687708
Chicago Uygun, Şükran. “The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences”. Sakarya University Journal of Science 24, sy. 6 (Aralık 2020): 1162-70. https://doi.org/10.16984/saufenbilder.687708.
EndNote Uygun Ş (01 Aralık 2020) The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences. Sakarya University Journal of Science 24 6 1162–1170.
IEEE Ş. Uygun, “The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences”, SAUJS, c. 24, sy. 6, ss. 1162–1170, 2020, doi: 10.16984/saufenbilder.687708.
ISNAD Uygun, Şükran. “The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences”. Sakarya University Journal of Science 24/6 (Aralık 2020), 1162-1170. https://doi.org/10.16984/saufenbilder.687708.
JAMA Uygun Ş. The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences. SAUJS. 2020;24:1162–1170.
MLA Uygun, Şükran. “The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences”. Sakarya University Journal of Science, c. 24, sy. 6, 2020, ss. 1162-70, doi:10.16984/saufenbilder.687708.
Vancouver Uygun Ş. The Relation Between Chebyshev Polynomials and Jacobsthal and Jacobsthal Lucas Sequences. SAUJS. 2020;24(6):1162-70.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.