Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 694 - 702, 01.08.2020
https://doi.org/10.16984/saufenbilder.708714

Öz

Kaynakça

  • 5. REFERENCES [1] I. Esen, M.A. Koç, Optimization of a passive vibration absorber for a barrel using the genetic algorithm, Expert Syst. Appl. 42 (2015). doi:10.1016/j.eswa.2014.08.038.
  • [2] M.A. Koç, İ. Esen, Y. Çay, Ö. Çerlek, M. Asım, H. Dal, M. Eroğlu, Vibration Suppression of Vehicle-Bridge-Interaction System using Multiple Tuned Mass Dampers, in: 5th Int. Symp. Innov. Technol. Eng. Sci., 2017: pp. 1–8.
  • [3] H.C. Kwon, M.C. Kim, I.W. Lee, Vibration control of bridges under moving loads, Comput. Struct. 66 (1998) 473–480. doi:10.1016/S0045-7949(97)00087-4.
  • [4] Mahsa Moghaddas, Finite Element Analysis and Passive Vibration Control of the Timoshenko Beam Traversed by a Moving Vehicle Using an Optimized Tuned Mass Damper, 2008.
  • [5] A.C. Mitra, G.J. Desai, S.R. Patwardhan, P.H. Shirke, W.M.H. Kurne, N. Banerjee, Optimization of Passive Vehicle Suspension System by Genetic Algorithm, Procedia Eng. 144 (2016) 1158–1166. doi:10.1016/j.proeng.2016.05.087.
  • [6] M. Omar, M.M. El-kassaby, W. Abdelghaffar, Parametric numerical study of electrohydraulic active suspension performance against passive suspension, Alexandria Eng. J. 57 (2018) 3609–3614. doi:10.1016/J.AEJ.2018.05.007.
  • [7] D. Younesian, E. Esmailzadeh, R. Sedaghati, Passive vibration control of beams subjected to random excitations with peaked PSD, JVC/Journal Vib. Control. 12 (2006) 941–953. doi:10.1177/1077546306068060.
  • [8] Q. Zhu, L. Li, C.J. Chen, C.Z. Liu, G. Di Hu, A Low-Cost Lateral Active Suspension System of the High-Speed Train for Ride Quality Based on the Resonant Control Method, IEEE Trans. Ind. Electron. 65 (2018) 4187–4196. doi:10.1109/TIE.2017.2767547.
  • [9] I. Eski, Ş. Yildirim, Vibration control of vehicle active suspension system using a new robust neural network control system, Simul. Model. Pract. Theory. 17 (2009) 778–793. doi:10.1016/j.simpat.2009.01.004.
  • [10] A.J. Yakel, A. Azizinamini, Train-Induced Vibration Control of High-Speed Railway Bridges Equipped with Multiple Tuned Mass Dampers, J. Bridg. Eng. 10 (2005) 28–38. doi:10.1061/(ASCE)1084-0702(2005)10.
  • [11] M. Moghaddas, E. Esmailzadeh, R. Sedaghati, P. Khosravi, Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper, J. Vib. Control. 18 (2012) 757–773. doi:10.1177/1077546311404267.
  • [12] F. Yang, R. Sedaghati, E. Esmailzadeh, Optimal vibration suppression of timoshenko beam with tuned-mass-damper using finite element method, J. Vib. Acoust. Trans. ASME. 131 (2009) 0310061–0310068. doi:10.1115/1.3085890.
  • [13] E. Esmailzadeh, N. Jalili, Optimum design of vibration absorbers for structurally damped Timoshenko beams, J. Vib. Acoust. Trans. ASME. 120 (1998) 833–841.
  • [14] J.-J. Wu, Study on the inertia effect of helical spring of the absorber on suppressing the dynamic responses of a beam subjected to a moving load, J. Sound Vib. 297 (2006) 981–999. doi:10.1016/J.JSV.2006.05.011.
  • [15] J.P. DEN HARTOG, Mechanical Vibrations, NEW YORK, 2008.
  • [16] A. Greco, A. Santini, Dynamic response of a flexural non-classically damped continuous beam under moving loadings, Comput. Struct. 80 (2002) 1945–1953. doi:10.1016/S0045-7949(02)00218-3.

Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation

Yıl 2020, , 694 - 702, 01.08.2020
https://doi.org/10.16984/saufenbilder.708714

Öz

In this study, dynamic analysis of Euler-Bernoulli beam and Tuned Mass Damper (TMD) interaction problem under the effect of moving load was carried out by the mode superposition method. After the differential equations of TMD are derived by Lagrange method, beams and TMD motion equations are integrated and matrices belonging to the motion equation of the whole system are obtained. The motion equation of the system is solved in the time domain using the Newmark-β algorithm. The effect of TMD on damping vibrations has been examined in terms of parameters such as frequency, damping rate, mass ratio and moving load speed. In addition, the effect of TMD on Dynamic Amplification Factor (DAF) was examined. As a result, with the TMD application carried out in this study, approximately 14% to 24% improvement was achieved in beam deformations and accelerations.

Kaynakça

  • 5. REFERENCES [1] I. Esen, M.A. Koç, Optimization of a passive vibration absorber for a barrel using the genetic algorithm, Expert Syst. Appl. 42 (2015). doi:10.1016/j.eswa.2014.08.038.
  • [2] M.A. Koç, İ. Esen, Y. Çay, Ö. Çerlek, M. Asım, H. Dal, M. Eroğlu, Vibration Suppression of Vehicle-Bridge-Interaction System using Multiple Tuned Mass Dampers, in: 5th Int. Symp. Innov. Technol. Eng. Sci., 2017: pp. 1–8.
  • [3] H.C. Kwon, M.C. Kim, I.W. Lee, Vibration control of bridges under moving loads, Comput. Struct. 66 (1998) 473–480. doi:10.1016/S0045-7949(97)00087-4.
  • [4] Mahsa Moghaddas, Finite Element Analysis and Passive Vibration Control of the Timoshenko Beam Traversed by a Moving Vehicle Using an Optimized Tuned Mass Damper, 2008.
  • [5] A.C. Mitra, G.J. Desai, S.R. Patwardhan, P.H. Shirke, W.M.H. Kurne, N. Banerjee, Optimization of Passive Vehicle Suspension System by Genetic Algorithm, Procedia Eng. 144 (2016) 1158–1166. doi:10.1016/j.proeng.2016.05.087.
  • [6] M. Omar, M.M. El-kassaby, W. Abdelghaffar, Parametric numerical study of electrohydraulic active suspension performance against passive suspension, Alexandria Eng. J. 57 (2018) 3609–3614. doi:10.1016/J.AEJ.2018.05.007.
  • [7] D. Younesian, E. Esmailzadeh, R. Sedaghati, Passive vibration control of beams subjected to random excitations with peaked PSD, JVC/Journal Vib. Control. 12 (2006) 941–953. doi:10.1177/1077546306068060.
  • [8] Q. Zhu, L. Li, C.J. Chen, C.Z. Liu, G. Di Hu, A Low-Cost Lateral Active Suspension System of the High-Speed Train for Ride Quality Based on the Resonant Control Method, IEEE Trans. Ind. Electron. 65 (2018) 4187–4196. doi:10.1109/TIE.2017.2767547.
  • [9] I. Eski, Ş. Yildirim, Vibration control of vehicle active suspension system using a new robust neural network control system, Simul. Model. Pract. Theory. 17 (2009) 778–793. doi:10.1016/j.simpat.2009.01.004.
  • [10] A.J. Yakel, A. Azizinamini, Train-Induced Vibration Control of High-Speed Railway Bridges Equipped with Multiple Tuned Mass Dampers, J. Bridg. Eng. 10 (2005) 28–38. doi:10.1061/(ASCE)1084-0702(2005)10.
  • [11] M. Moghaddas, E. Esmailzadeh, R. Sedaghati, P. Khosravi, Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper, J. Vib. Control. 18 (2012) 757–773. doi:10.1177/1077546311404267.
  • [12] F. Yang, R. Sedaghati, E. Esmailzadeh, Optimal vibration suppression of timoshenko beam with tuned-mass-damper using finite element method, J. Vib. Acoust. Trans. ASME. 131 (2009) 0310061–0310068. doi:10.1115/1.3085890.
  • [13] E. Esmailzadeh, N. Jalili, Optimum design of vibration absorbers for structurally damped Timoshenko beams, J. Vib. Acoust. Trans. ASME. 120 (1998) 833–841.
  • [14] J.-J. Wu, Study on the inertia effect of helical spring of the absorber on suppressing the dynamic responses of a beam subjected to a moving load, J. Sound Vib. 297 (2006) 981–999. doi:10.1016/J.JSV.2006.05.011.
  • [15] J.P. DEN HARTOG, Mechanical Vibrations, NEW YORK, 2008.
  • [16] A. Greco, A. Santini, Dynamic response of a flexural non-classically damped continuous beam under moving loadings, Comput. Struct. 80 (2002) 1945–1953. doi:10.1016/S0045-7949(02)00218-3.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Akif Koç 0000-0001-7461-9795

Yayımlanma Tarihi 1 Ağustos 2020
Gönderilme Tarihi 24 Mart 2020
Kabul Tarihi 15 Mayıs 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Koç, M. A. (2020). Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation. Sakarya University Journal of Science, 24(4), 694-702. https://doi.org/10.16984/saufenbilder.708714
AMA Koç MA. Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation. SAUJS. Ağustos 2020;24(4):694-702. doi:10.16984/saufenbilder.708714
Chicago Koç, Mehmet Akif. “Dynamic Response of an Euler-Bernoulli Beam Coupled With a Tuned Mass Damper under Moving Load Excitation”. Sakarya University Journal of Science 24, sy. 4 (Ağustos 2020): 694-702. https://doi.org/10.16984/saufenbilder.708714.
EndNote Koç MA (01 Ağustos 2020) Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation. Sakarya University Journal of Science 24 4 694–702.
IEEE M. A. Koç, “Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation”, SAUJS, c. 24, sy. 4, ss. 694–702, 2020, doi: 10.16984/saufenbilder.708714.
ISNAD Koç, Mehmet Akif. “Dynamic Response of an Euler-Bernoulli Beam Coupled With a Tuned Mass Damper under Moving Load Excitation”. Sakarya University Journal of Science 24/4 (Ağustos 2020), 694-702. https://doi.org/10.16984/saufenbilder.708714.
JAMA Koç MA. Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation. SAUJS. 2020;24:694–702.
MLA Koç, Mehmet Akif. “Dynamic Response of an Euler-Bernoulli Beam Coupled With a Tuned Mass Damper under Moving Load Excitation”. Sakarya University Journal of Science, c. 24, sy. 4, 2020, ss. 694-02, doi:10.16984/saufenbilder.708714.
Vancouver Koç MA. Dynamic Response of an Euler-Bernoulli Beam Coupled with a Tuned Mass Damper under Moving Load Excitation. SAUJS. 2020;24(4):694-702.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.