BibTex RIS Kaynak Göster

Biomechanical Energy Harvester Design For Active Prostheses

Yıl 2012, Cilt: 16 Sayı: 3, 146 - 156, 01.06.2012

Öz

-

Kaynakça

  • Power Knee: http://www.ossur.co.uk/lisalib/getfile. aspx?itemid=22244
  • Sugar TG. A novel selective compliant actuator. Mechatronics, 12:1157–1171, 2002.
  • Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis, IEEE T. Biomed. Eng. 57:542-55, 2010.
  • Paluska D, Herr H. The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design. Robot. Auton. Syst. 54:667-673, 2006.
  • Paradiso JA. Energy harvesting for mobile computing. Responsive Environments Group, MIT Media Lab, (http://www.media.mit.edu/resenv).
  • Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. Ieee Pervas Comput, 4:18-27, 2005.
  • Fite K, Mitchell J, Sup F, Goldfarb M. Design and Control of an Electrically Powered Knee Prosthesis, Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, June 12-15, Noordwijk, The Netherlands
  • Sup F, Varol HA, Goldfarb M. Upslope walking with a powered knee and ankle prosthesis: Initial results with an amputee subject, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19:71-78, 2011.
  • Nokia 6301: http://www.nokia.com/A4140021
  • Navking X20: http://www.navking.com/
  • Dell Inspiron: http://support.dell.com/support/edocs/ systems/ins1525/en/index.htm
  • Winter DA, Patla EA, Frank SJ, Walt ES. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther, 70:15-22, 1990.
  • Kymissis J, Kendall C, Paradiso JA, Gershenfeld N. Parasitic power harvesting in shoes. In Second IEEE International Conference on Wearable Computing; Oct IEEE Computer Society Press, 132-139, 1998.
  • Kornbluh RD, Pelrine R, Pei Q, Heydt R, Stanford S, Oh S, Eckerle J. Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies. San Diego, CA, 254- 270, 2002.
  • Kishi M, Nemoto H, Hamao T, Yamamoto M, Sudou S, Mandai M, Yamamoto S: Micro-Thermoelectric Modules and Their Application to Wristwatches as an Energy Source. Eighteenth International Conference on Thermoelectrics Proceedings, ICT’99, Baltimore, 301-307, 1999.
  • Rome LC, Flynn L, Goldman EM, Yoo TD. Generating electricity while walking with loads. Science, 309:1725-1728, 2005.
  • Feenstraa J, Granstroma J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 22:721–734, 2008.
  • Foissac M, Millet GY, Geyssant A, Freychat P, Belli A. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking. Journal of Biomechanics, 42:125–130, 2009.
  • Xu X, Hsiang SM, Mirka GA. The effects of a suspended-load backpack on gait. Gait&Posture, 29:151–153, 2009.
  • Doke J, Donelan JM, Kuo AD. Mechanics and energetics of swinging the human leg.The Journal of Experimental Biology, 208:439-445, 2005.
  • Donelan JM, Li Q, Naing V, Hoffer A, Weber DJ, Kuo AD. Biomedical energy harvesting, generating electricity during walking with minimal user effort. Science, 319:807-810, 2008.
  • Kuo AD. Harvesting energy by improving the economy of human walking Science. 309:1686-1687, 2005.
  • Collins S. Controlled energy storage and return in a prosthetic foot. Dynamic Walking, T.U.Delft, 2008,
  • Collins SH, Kuo AD. Recycling energy to restore impaired ankle function during human walking. Public Library of Science, 5, 2010. Berker N, Yalçın S. Yürüme Analizi. Avrupa Tıp Kitapçılık, İstanbul,2001 Margaria R. Positive and negative work performances and their efficiencies in human locomotion. Int. Z Angew Physiol, 25:339-351, 1968.
  • Demirdoven N, Deutch J. Hybrid cars now, fuel cell cars later. Science, 305:974-976, 2004.
  • Winter DA. Energy generation and absorption at the ankle and knee during fast, natural and slow cadences. Clin Orthop, 147-154, 1983. Winter DA. Biomechanics and motor control of human movement, 2nd edition, New York, Wiley, 1990.
  • Maxonmotor: http://www.maxonmotor.com/maxon/ view/ content/index.

Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı

Yıl 2012, Cilt: 16 Sayı: 3, 146 - 156, 01.06.2012

Öz

One of the factors restricting the functions of active prostheses is limited charge times and weights of the batteries. Therefore, some biomechanical energy harvesting studies are conducted for reducing the dependence on batteries and developing the systems that produce energy by utilizing one's own actions during daily living activities. In this study, as a new approach to meet energy needs of active-controlled lower limb prostheses, the design of a biomechanical energy harvester that produces electrical energy from the movements of the knee joint during gait were carried out. This harvester is composed of the generator, planetary gear system and one-way clutch that transmit just the knee extension. Low weight, low additional metabolic power consumption requirement and high electrical power generation are targeted in design process. The total reduction ratio of the transmission is 104, and the knee joint reaction torque applied by the system is 6 Nm. Average electrical powers that can be obtained are 17 W and 5,8 W for the swing extension phase and the entire cycle, respectively. These values seem to be sufficient for charging the battery units of many prostheses and similar medical systems, and portable electronic devices such as mobile phones, navigation devices and laptops.

Kaynakça

  • Power Knee: http://www.ossur.co.uk/lisalib/getfile. aspx?itemid=22244
  • Sugar TG. A novel selective compliant actuator. Mechatronics, 12:1157–1171, 2002.
  • Varol HA, Sup F, Goldfarb M. Multiclass real-time intent recognition of a powered lower limb prosthesis, IEEE T. Biomed. Eng. 57:542-55, 2010.
  • Paluska D, Herr H. The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design. Robot. Auton. Syst. 54:667-673, 2006.
  • Paradiso JA. Energy harvesting for mobile computing. Responsive Environments Group, MIT Media Lab, (http://www.media.mit.edu/resenv).
  • Paradiso JA, Starner T. Energy scavenging for mobile and wireless electronics. Ieee Pervas Comput, 4:18-27, 2005.
  • Fite K, Mitchell J, Sup F, Goldfarb M. Design and Control of an Electrically Powered Knee Prosthesis, Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, June 12-15, Noordwijk, The Netherlands
  • Sup F, Varol HA, Goldfarb M. Upslope walking with a powered knee and ankle prosthesis: Initial results with an amputee subject, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19:71-78, 2011.
  • Nokia 6301: http://www.nokia.com/A4140021
  • Navking X20: http://www.navking.com/
  • Dell Inspiron: http://support.dell.com/support/edocs/ systems/ins1525/en/index.htm
  • Winter DA, Patla EA, Frank SJ, Walt ES. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther, 70:15-22, 1990.
  • Kymissis J, Kendall C, Paradiso JA, Gershenfeld N. Parasitic power harvesting in shoes. In Second IEEE International Conference on Wearable Computing; Oct IEEE Computer Society Press, 132-139, 1998.
  • Kornbluh RD, Pelrine R, Pei Q, Heydt R, Stanford S, Oh S, Eckerle J. Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies. San Diego, CA, 254- 270, 2002.
  • Kishi M, Nemoto H, Hamao T, Yamamoto M, Sudou S, Mandai M, Yamamoto S: Micro-Thermoelectric Modules and Their Application to Wristwatches as an Energy Source. Eighteenth International Conference on Thermoelectrics Proceedings, ICT’99, Baltimore, 301-307, 1999.
  • Rome LC, Flynn L, Goldman EM, Yoo TD. Generating electricity while walking with loads. Science, 309:1725-1728, 2005.
  • Feenstraa J, Granstroma J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 22:721–734, 2008.
  • Foissac M, Millet GY, Geyssant A, Freychat P, Belli A. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking. Journal of Biomechanics, 42:125–130, 2009.
  • Xu X, Hsiang SM, Mirka GA. The effects of a suspended-load backpack on gait. Gait&Posture, 29:151–153, 2009.
  • Doke J, Donelan JM, Kuo AD. Mechanics and energetics of swinging the human leg.The Journal of Experimental Biology, 208:439-445, 2005.
  • Donelan JM, Li Q, Naing V, Hoffer A, Weber DJ, Kuo AD. Biomedical energy harvesting, generating electricity during walking with minimal user effort. Science, 319:807-810, 2008.
  • Kuo AD. Harvesting energy by improving the economy of human walking Science. 309:1686-1687, 2005.
  • Collins S. Controlled energy storage and return in a prosthetic foot. Dynamic Walking, T.U.Delft, 2008,
  • Collins SH, Kuo AD. Recycling energy to restore impaired ankle function during human walking. Public Library of Science, 5, 2010. Berker N, Yalçın S. Yürüme Analizi. Avrupa Tıp Kitapçılık, İstanbul,2001 Margaria R. Positive and negative work performances and their efficiencies in human locomotion. Int. Z Angew Physiol, 25:339-351, 1968.
  • Demirdoven N, Deutch J. Hybrid cars now, fuel cell cars later. Science, 305:974-976, 2004.
  • Winter DA. Energy generation and absorption at the ankle and knee during fast, natural and slow cadences. Clin Orthop, 147-154, 1983. Winter DA. Biomechanics and motor control of human movement, 2nd edition, New York, Wiley, 1990.
  • Maxonmotor: http://www.maxonmotor.com/maxon/ view/ content/index.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Akın Oğuz Kaptı Bu kişi benim

Erkul Kurulay Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2012
Gönderilme Tarihi 14 Mart 2014
Yayımlandığı Sayı Yıl 2012 Cilt: 16 Sayı: 3

Kaynak Göster

APA Kaptı, A. O., & Kurulay, E. (2012). Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı. Sakarya University Journal of Science, 16(3), 146-156. https://doi.org/10.16984/saufbed.65514
AMA Kaptı AO, Kurulay E. Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı. SAUJS. Aralık 2012;16(3):146-156. doi:10.16984/saufbed.65514
Chicago Kaptı, Akın Oğuz, ve Erkul Kurulay. “Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı”. Sakarya University Journal of Science 16, sy. 3 (Aralık 2012): 146-56. https://doi.org/10.16984/saufbed.65514.
EndNote Kaptı AO, Kurulay E (01 Aralık 2012) Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı. Sakarya University Journal of Science 16 3 146–156.
IEEE A. O. Kaptı ve E. Kurulay, “Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı”, SAUJS, c. 16, sy. 3, ss. 146–156, 2012, doi: 10.16984/saufbed.65514.
ISNAD Kaptı, Akın Oğuz - Kurulay, Erkul. “Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı”. Sakarya University Journal of Science 16/3 (Aralık 2012), 146-156. https://doi.org/10.16984/saufbed.65514.
JAMA Kaptı AO, Kurulay E. Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı. SAUJS. 2012;16:146–156.
MLA Kaptı, Akın Oğuz ve Erkul Kurulay. “Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı”. Sakarya University Journal of Science, c. 16, sy. 3, 2012, ss. 146-5, doi:10.16984/saufbed.65514.
Vancouver Kaptı AO, Kurulay E. Aktif Protezler İçin Biyomekanik Enerji Üreteci Tasarımı. SAUJS. 2012;16(3):146-5.