This paper proposes some methods of robust text-independent speaker identification based on Gaussian Mixture Model (GMM). We implemented a combination of GMM model with a set of classifiers such as Support Vector Machine (SVM), K-Nearest Neighbour (K-NN), and Naive Bayes Classifier (NBC). In order to improve the identification rate, we developed a combination of hybrid systems by using validation technique. The experiments were performed on the dialect DR1 of the TIMIT corpus. The results have showed a better performance for the developed technique compared to the individual techniques.
Bu çalışma Gaussian Mixture Model tabanlı metin-bağımsız konuşmacı tanıma yöntemleri sunar. GMM model ile Support Vector Machine, K-nearest Neighbour ve Naive Bayes sınıflandırıcı gibi sınıflandırıcıların kombinasyonu gerçekleştirilmiştir. Tanıma oranını iyileştirmek için, doğrulama yöntemi kullanarak hibrid sistemlerin kombinasyonunu geliştirdik. Deneyler TIMIT corpus’ un DR1 lehçesi üzerine yapılmıştır. Sonuçlar ayrı ayrı yöntemlerle karılaştırıldığında geliştirilen yöntemle daha iyi başarım göstermiştir.
Nahayo, Y., & Arı, S. (2016). Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. Sakarya University Journal of Science, 20(1), 1-6. https://doi.org/10.16984/saufenbilder.00295
AMA
Nahayo Y, Arı S. Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. SAUJS. Mart 2016;20(1):1-6. doi:10.16984/saufenbilder.00295
Chicago
Nahayo, Yussouf, ve Seçkin Arı. “Performance of Svm, K-Nn and Nbc Classifiers for Text-Independent Speaker Identification With and Without Modelling through Merging Models”. Sakarya University Journal of Science 20, sy. 1 (Mart 2016): 1-6. https://doi.org/10.16984/saufenbilder.00295.
EndNote
Nahayo Y, Arı S (01 Mart 2016) Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. Sakarya University Journal of Science 20 1 1–6.
IEEE
Y. Nahayo ve S. Arı, “Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models”, SAUJS, c. 20, sy. 1, ss. 1–6, 2016, doi: 10.16984/saufenbilder.00295.
ISNAD
Nahayo, Yussouf - Arı, Seçkin. “Performance of Svm, K-Nn and Nbc Classifiers for Text-Independent Speaker Identification With and Without Modelling through Merging Models”. Sakarya University Journal of Science 20/1 (Mart 2016), 1-6. https://doi.org/10.16984/saufenbilder.00295.
JAMA
Nahayo Y, Arı S. Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. SAUJS. 2016;20:1–6.
MLA
Nahayo, Yussouf ve Seçkin Arı. “Performance of Svm, K-Nn and Nbc Classifiers for Text-Independent Speaker Identification With and Without Modelling through Merging Models”. Sakarya University Journal of Science, c. 20, sy. 1, 2016, ss. 1-6, doi:10.16984/saufenbilder.00295.
Vancouver
Nahayo Y, Arı S. Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models. SAUJS. 2016;20(1):1-6.