Araştırma Makalesi
BibTex RIS Kaynak Göster

On the differential geometric elements of bertrandian darboux ruled surface in E

Yıl 2017, Cilt: 21 Sayı: 3, 572 - 576, 01.06.2017
https://doi.org/10.16984/saufenbilder.306867

Öz

In this paper, we consider two special ruled surfaces associated to a Bertrand curve and Bertrand mate . First,
Bertrandian Darboux Ruled surface with the base curve
has been defined and examined in terms of the FrenetSerret apparatus of the curve , in E3 . Later, the differential geometric elements such as, Weingarten map S,
Gaussian curvature K and mean curvature H, of Bertrandian Darboux Ruled the surface and Darboux ruled surface has
been examined relative to each other. Further, first, second and third fundamental forms of Bertrandian Darboux Ruled
surface have been investigated in terms of the Frenet apparatus of Bertrand curve
, too.  

Kaynakça

  • [1] do Carmo, M. P., Differential Geometry of Curves and Surfaces. Prentice-Hall, ISBN 0-13-212589-7, 1976.
  • [2] Eisenhart, Luther P., A Treatise on the Differential Geometry of Curves and Surfaces. Dover, ISBN 0-486-43820-1, 2004.
  • [3] Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 205, 1997.
  • [4] Hacısalihoğlu, H.H., Differential Geometry(in Turkish), vol.1, Inönü University Publications, 1994.
  • [5] Hoschek, J., Liniengeometrie. BI-Hochschulskripte, Zurich 1971.
  • [6] Izumiya, S. and Takeuchi, N., Special curves and ruled surfaces . Beitr age zur Algebra und Geometrie Contributions to Algebra and Geometry, vol.44, no. 1, 203-212, 2003.
  • [7] Kılıçoğlu Ş., Şenyurt S., and Hacısalihoğlu H. H., An Examination on the Positions of Frenet ruled Surface Along Bertrand Pairs and according to Their Normal Vector Fields in E^3 Applied Mathematical Sciences, Vol. 9, no. 142, 7095 - 7103 2015.
  • [8] Şenyurt, S., and Kılıçoğlu S. On the differential geometric elements of the involute ˜D scroll, Adv. Appl. Clifford Algebras (2015) Springer Basel, doi:10.1007/s00006-015-0535-z. 25(4), pp. 977-988, 2015.
  • [9] Kılıçoğlu Ş. and Şenyurt S., On the Differential Geometric Elements of Mannheim Darboux Ruled surface in E3 (accepted)
  • [10] Springerlink, Encyclopaedia of Mathematics. Springer-Verlag, Berlin Heidelberg New York 2002.
  • [11] Strubecker, K., Differential geometrie II. Sammlung G oschen, 2. Aufl., Berlin 1969.

Öklid uzayında bertrandian darboux regle yüzeyin diferensiyel geometrik elemanlar

Yıl 2017, Cilt: 21 Sayı: 3, 572 - 576, 01.06.2017
https://doi.org/10.16984/saufenbilder.306867

Öz

Bu çalışmada Bertrand eğrisi ve Bertrand eşi olan eğriler üzerinde Darboux vektörleri ile üretilen iki özel regle yüzeyi
gözönüne alındı. İlk olarak,
eğrisinin Bertrand Darboux regle yüzeyi, Bertrand eğrisinin Frenet-Serret aparatlar
cinsinden tanımlandı ve araştırıldı. Daha sonra, Bertrand Darboux regle yüzeyi ile Darboux regle yüzeyinin
Weingarten dönüşümü, Gauss eğriliği ve ortalama eğriliği gibi diferensiyel geometrik değişmezleri birbirleri ile ilişkili
olarak incelendi. Son olarak, Bertrand Darboux regle yüzeyinin birinci, ikinci ve üçüncü temel formlar
Bertrand
eğrisinin Frenet-Serret aparatlar cinsinden ifadeleri verildi.
  

Kaynakça

  • [1] do Carmo, M. P., Differential Geometry of Curves and Surfaces. Prentice-Hall, ISBN 0-13-212589-7, 1976.
  • [2] Eisenhart, Luther P., A Treatise on the Differential Geometry of Curves and Surfaces. Dover, ISBN 0-486-43820-1, 2004.
  • [3] Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, p. 205, 1997.
  • [4] Hacısalihoğlu, H.H., Differential Geometry(in Turkish), vol.1, Inönü University Publications, 1994.
  • [5] Hoschek, J., Liniengeometrie. BI-Hochschulskripte, Zurich 1971.
  • [6] Izumiya, S. and Takeuchi, N., Special curves and ruled surfaces . Beitr age zur Algebra und Geometrie Contributions to Algebra and Geometry, vol.44, no. 1, 203-212, 2003.
  • [7] Kılıçoğlu Ş., Şenyurt S., and Hacısalihoğlu H. H., An Examination on the Positions of Frenet ruled Surface Along Bertrand Pairs and according to Their Normal Vector Fields in E^3 Applied Mathematical Sciences, Vol. 9, no. 142, 7095 - 7103 2015.
  • [8] Şenyurt, S., and Kılıçoğlu S. On the differential geometric elements of the involute ˜D scroll, Adv. Appl. Clifford Algebras (2015) Springer Basel, doi:10.1007/s00006-015-0535-z. 25(4), pp. 977-988, 2015.
  • [9] Kılıçoğlu Ş. and Şenyurt S., On the Differential Geometric Elements of Mannheim Darboux Ruled surface in E3 (accepted)
  • [10] Springerlink, Encyclopaedia of Mathematics. Springer-Verlag, Berlin Heidelberg New York 2002.
  • [11] Strubecker, K., Differential geometrie II. Sammlung G oschen, 2. Aufl., Berlin 1969.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Süleyman Senyurt

Şeyda Kılıçoğlu

Yayımlanma Tarihi 1 Haziran 2017
Gönderilme Tarihi 1 Kasım 2016
Kabul Tarihi 4 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 21 Sayı: 3

Kaynak Göster

APA Senyurt, S., & Kılıçoğlu, Ş. (2017). On the differential geometric elements of bertrandian darboux ruled surface in E. Sakarya University Journal of Science, 21(3), 572-576. https://doi.org/10.16984/saufenbilder.306867
AMA Senyurt S, Kılıçoğlu Ş. On the differential geometric elements of bertrandian darboux ruled surface in E. SAUJS. Haziran 2017;21(3):572-576. doi:10.16984/saufenbilder.306867
Chicago Senyurt, Süleyman, ve Şeyda Kılıçoğlu. “On the Differential Geometric Elements of Bertrandian Darboux Ruled Surface in E”. Sakarya University Journal of Science 21, sy. 3 (Haziran 2017): 572-76. https://doi.org/10.16984/saufenbilder.306867.
EndNote Senyurt S, Kılıçoğlu Ş (01 Haziran 2017) On the differential geometric elements of bertrandian darboux ruled surface in E. Sakarya University Journal of Science 21 3 572–576.
IEEE S. Senyurt ve Ş. Kılıçoğlu, “On the differential geometric elements of bertrandian darboux ruled surface in E”, SAUJS, c. 21, sy. 3, ss. 572–576, 2017, doi: 10.16984/saufenbilder.306867.
ISNAD Senyurt, Süleyman - Kılıçoğlu, Şeyda. “On the Differential Geometric Elements of Bertrandian Darboux Ruled Surface in E”. Sakarya University Journal of Science 21/3 (Haziran 2017), 572-576. https://doi.org/10.16984/saufenbilder.306867.
JAMA Senyurt S, Kılıçoğlu Ş. On the differential geometric elements of bertrandian darboux ruled surface in E. SAUJS. 2017;21:572–576.
MLA Senyurt, Süleyman ve Şeyda Kılıçoğlu. “On the Differential Geometric Elements of Bertrandian Darboux Ruled Surface in E”. Sakarya University Journal of Science, c. 21, sy. 3, 2017, ss. 572-6, doi:10.16984/saufenbilder.306867.
Vancouver Senyurt S, Kılıçoğlu Ş. On the differential geometric elements of bertrandian darboux ruled surface in E. SAUJS. 2017;21(3):572-6.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.