Research Article
BibTex RIS Cite

False alarm rates of fault detection methods

Year 2018, Volume: 22 Issue: 1, 49 - 55, 01.02.2018
https://doi.org/10.16984/saufenbilder.310240

Abstract

This study focuses on the fault detection (FD) and
false alarm rates (FAR) of Principal component analysis (PCA) and  independent component analysis (ICA)
algorithms on the Tennessee Eastman (TE) process. However,  PCA and ICA 
algorithms have been applied widely to systems for data driven fault
detection, there are limited work on FARs of the algorithms.  In this work, FARs of the algorithms are
investigated on TE process. Simulation study indicates that the proposed
algorithms are robust for fault detection, and ICA has higher performance than
PCA for FARs.

References

  • [1] J. Chen ve R. J. Patton, Robust Model-Based Diagnosis for Dynamics Systems, Kluber Academic Publisher, 1999.
  • [2] T. Kourti, “Process analysis and abnormal situation detection: from theory to practice,” Control Systems, IEEE 22.5, 10-25, 2002.
  • [3] S. Yin, ve ark., “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” Journal of Process Control 22.9, 1567-1581, 2012.
  • [4] T. Villegas, M. J. Fuente ve M. Rodríguez, “Principal component analysis for fault detection and diagnosis. experience with a pilot plant,” in CIMMACS'10 Proceedings of the 9th WSEAS international conference on computational intelligence, man-machine systems and cybernetics, 2010.
  • [5] J. Lee, C. K. Yoo ve I. Lee, “Statistical process monitoring with independent component analysis,” Journal of Process Control14.5, 467-485, 2004.
  • [6] H. Abdi ve J. W. Lynne, “Principal component analysis,” Wiley Interdisciplinary Reviews: Computational Statistics 2.4, 433-459, 2010.
  • [7] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” Neural Networks, IEEE Transactions on 10.3, 626-634, 1999.
  • [8] J. F. MacGregor, T. Kourti ve P. Nomikos, “Analysis, monitoring and fault diagnosis of industrial processes using multivariate statistical projection methods,” in Proceedings of 13th IFAC World Congress, San Francisco, USA, 1996.
  • [9] B. Wise ve N. B. Gallagher, “The process chemometrics approach to process monitoring and fault detection,” Journal of Process Control 6.6, 329-348, 1996.
  • [10] D. Dong ve T. J. McAvoy, “Nonlinear principal component analysis—based on principal curves and neural networks,” Computers & Chemical Engineering 20.1, 65-78, 1996.
  • [11] A. Belouchrani ve ark., “A blind source separation technique using second-order statistics,” Signal Processing, IEEE Transactions on 45.2, 434-444, 1997.
  • [12] A. Yeredor, “Blind separation of Gaussian sources via second-order statistics with asymptotically optimal weighting,” IEEE Signal Processing Letters 7.7, 197-200, 2000.
  • [13] S. Ding ve ark., “On the application of PCA technique to fault diagnosis,” Tsinghua Science & Technology 15.2, 138-144, 2010.
  • [14] J. E. Jackson ve G. S. Mudholkar, “Control procedures for residuals associated with principal component analysis,” Technometrics 21.3, 341-349, 1979.

Hata bulma yöntemlerinin yanlış alarm oranları

Year 2018, Volume: 22 Issue: 1, 49 - 55, 01.02.2018
https://doi.org/10.16984/saufenbilder.310240

Abstract

Bu
çalışma bağımsız bileşen analiz (BBA) ve temel bileşen analiz (TBA)
algoritmalarının Tennessee Eastman (TE) süreci üzerindeki hata bulma ve yanlış
alarm oranları (YAO) üzerine yoğunlaşmaktadır. TBA ve ICA algoritmaları, veri
tabanlı hata bulmak için oldukça fazla uygulanmalarına rağmen, algoritmaların
YAO üzerine sınırlı çalışma vardır. Bu çalışmada, algoritmaların YAO’ları TE
süreci üzerinde incelenecektir. Simülasyon çalışmaları, sunulan algoritmalar
hata bulmada oldukça doğruyken, YAO’ları için BBA’nın TBA’dan daha yüksek
performansa sahip olduğunu göstermiştir.

References

  • [1] J. Chen ve R. J. Patton, Robust Model-Based Diagnosis for Dynamics Systems, Kluber Academic Publisher, 1999.
  • [2] T. Kourti, “Process analysis and abnormal situation detection: from theory to practice,” Control Systems, IEEE 22.5, 10-25, 2002.
  • [3] S. Yin, ve ark., “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” Journal of Process Control 22.9, 1567-1581, 2012.
  • [4] T. Villegas, M. J. Fuente ve M. Rodríguez, “Principal component analysis for fault detection and diagnosis. experience with a pilot plant,” in CIMMACS'10 Proceedings of the 9th WSEAS international conference on computational intelligence, man-machine systems and cybernetics, 2010.
  • [5] J. Lee, C. K. Yoo ve I. Lee, “Statistical process monitoring with independent component analysis,” Journal of Process Control14.5, 467-485, 2004.
  • [6] H. Abdi ve J. W. Lynne, “Principal component analysis,” Wiley Interdisciplinary Reviews: Computational Statistics 2.4, 433-459, 2010.
  • [7] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” Neural Networks, IEEE Transactions on 10.3, 626-634, 1999.
  • [8] J. F. MacGregor, T. Kourti ve P. Nomikos, “Analysis, monitoring and fault diagnosis of industrial processes using multivariate statistical projection methods,” in Proceedings of 13th IFAC World Congress, San Francisco, USA, 1996.
  • [9] B. Wise ve N. B. Gallagher, “The process chemometrics approach to process monitoring and fault detection,” Journal of Process Control 6.6, 329-348, 1996.
  • [10] D. Dong ve T. J. McAvoy, “Nonlinear principal component analysis—based on principal curves and neural networks,” Computers & Chemical Engineering 20.1, 65-78, 1996.
  • [11] A. Belouchrani ve ark., “A blind source separation technique using second-order statistics,” Signal Processing, IEEE Transactions on 45.2, 434-444, 1997.
  • [12] A. Yeredor, “Blind separation of Gaussian sources via second-order statistics with asymptotically optimal weighting,” IEEE Signal Processing Letters 7.7, 197-200, 2000.
  • [13] S. Ding ve ark., “On the application of PCA technique to fault diagnosis,” Tsinghua Science & Technology 15.2, 138-144, 2010.
  • [14] J. E. Jackson ve G. S. Mudholkar, “Control procedures for residuals associated with principal component analysis,” Technometrics 21.3, 341-349, 1979.
There are 14 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

Yusuf Sevim

Publication Date February 1, 2018
Submission Date May 3, 2017
Acceptance Date August 29, 2017
Published in Issue Year 2018 Volume: 22 Issue: 1

Cite

APA Sevim, Y. (2018). False alarm rates of fault detection methods. Sakarya University Journal of Science, 22(1), 49-55. https://doi.org/10.16984/saufenbilder.310240
AMA Sevim Y. False alarm rates of fault detection methods. SAUJS. February 2018;22(1):49-55. doi:10.16984/saufenbilder.310240
Chicago Sevim, Yusuf. “False Alarm Rates of Fault Detection Methods”. Sakarya University Journal of Science 22, no. 1 (February 2018): 49-55. https://doi.org/10.16984/saufenbilder.310240.
EndNote Sevim Y (February 1, 2018) False alarm rates of fault detection methods. Sakarya University Journal of Science 22 1 49–55.
IEEE Y. Sevim, “False alarm rates of fault detection methods”, SAUJS, vol. 22, no. 1, pp. 49–55, 2018, doi: 10.16984/saufenbilder.310240.
ISNAD Sevim, Yusuf. “False Alarm Rates of Fault Detection Methods”. Sakarya University Journal of Science 22/1 (February 2018), 49-55. https://doi.org/10.16984/saufenbilder.310240.
JAMA Sevim Y. False alarm rates of fault detection methods. SAUJS. 2018;22:49–55.
MLA Sevim, Yusuf. “False Alarm Rates of Fault Detection Methods”. Sakarya University Journal of Science, vol. 22, no. 1, 2018, pp. 49-55, doi:10.16984/saufenbilder.310240.
Vancouver Sevim Y. False alarm rates of fault detection methods. SAUJS. 2018;22(1):49-55.