Araştırma Makalesi
BibTex RIS Kaynak Göster

Almost Entropy Convergence for Fuzzy Sequence Spaces

Yıl 2018, Cilt: 22 Sayı: 3, 853 - 861, 01.06.2018
https://doi.org/10.16984/saufenbilder.270099

Öz

In this paper, we
introduce a new type convergence called almost entropy convergence for
sequences of fuzzy numbers. In addition this, we show that almost entropy
convergence can be defined as the intersection of  convergence field of Cesàro matrix. Besides,
we generalize this idea to any matrix T
. By this way,
we present the definition of  T
- entropy
convergence. After, the set of all almost entropy convergent and null almost
entropy convergent sequences of fuzzy sets are defined.   In addition this, we give some theorems, for
example, we show that the sets
 E_f and E_f_0  are complete metric spaces and give the
inclusion relations between the spaces E_c, E_f
 and E_c,  and proofs on this notion.

Kaynakça

  • [6] P. Diamond, P. Kloeden, “Metric spaces of fuzzy sets”. Fuzzy Sets Syst., vol. 35, pp. 241-249, 1990.
  • [7] R. Goetschel, W. Voxman, “Elementary fuzzy calculus”. Fuzzy Sets Syst., vol. 18, pp. 31–43, 1986.
  • [8] B. Kosko, “Fuzzy entropy and conditioning”, Information Sciences vol. 40, pp. 165–174, 1986.
  • [9] G. Abdollahian, C. M. Taskiran, Z. Pizlo, E. J. Delp, “Camera motion - based analysis of user generated video”.
  • IEEE Transactions on Multimedia archive, vol. 12, pp. 28-41, 2010.
  • [10] M. Matloka, 1986. “Sequences of fuzzy numbers”, BUSEFAL, vol. 28, pp. 28–37.
  • [11] W. Wang, C. Chiu, “The entropy change of fuzzy numbers with arithmetic operations”, Fuzzy Sets Syst., vol.
  • 111, pp. 357–366, 2000.
  • [12] Z. Zararsız, M. Şengönül, “On the gravity of center of sequence of fuzzy numbers”, Annals of Fuzzy
  • Mathematics and Informatics, vol. 6, pp. 479–485, 2013.
  • [13] H.-J. Zimmermann, “Fuzzy set theory-and its applications”, Kluwer Academic Publishers, 2nd revised ed.,
  • USA, 1991, 399 pages.
  • [14] De Luna Bayés, A. “Textbook of clinical electrocardiography”, Martinus Nijhoff Publishers, USA, 496 pages.
  • [15] W. Pedrycz, “Why triangular membership functions?”, Fuzzy Sets Syst., vol. 64, pp. 21–30.
  • [16] W. Pedrycz, F. Gomide, “Fuzzy systems engineering”, Toward Human-Centric Computing, IEEE Press, 2007, 526 pages.
  • [17] G. Petersen, “Regular matrix transformations”, McGraw-Hill Publishing Company Limited, London, 1966.
  • [18] G. G. Lorentz, “A contribution to the theory of divergent series”, Acta Math., vol. 80, pp. 167–190, 1948.
  • [19] S. Atpınar, M. Şengönül, “Entropy convergence for sequences of fuzzy numbers ” presented at the Int. Conf.
  • on Analysis and Its Applications, Kırşehir, Turkey, July 12-15, 2016.

Bulanık Dizi Uzaylarının Hemen Hemen Entropisel Yakınsaklığı

Yıl 2018, Cilt: 22 Sayı: 3, 853 - 861, 01.06.2018
https://doi.org/10.16984/saufenbilder.270099

Öz

Bu çalışmada,
bulanık sayı dizilerinin hemen hemen entropisel yakınsaklığı olan adlandırılan
yeni tip bir yakınsaklık tarifi verilmiştir. Buna ek olarak, hemen hemen entropisel
yakınsaklığın birinci dereceden Cesàro matrisinin sütunlarının
ötelenmesiyle,  yani Cesàro matrisinin
yakınsaklık alanlarının kesişimi kullanılarak tanımlanabileciğini gösterdik. Ve
bu fikri herhangi bir T
 matrisine genişleterek T- entropisel yakınsaklık
tanımını verdik. Ayrıca, bulanık sayıların hemen hemen entropisel yakınsak ve
sıfıra hemen hemen entropisel yakınsak dizilerinin kümeleri tanıtıldı. Son
olarak, bu yeni kavram ile ilgili önemli görülen teorem ve ispatlarına yer
verildi. Örneğin, E_f 
 ve E_f _0 kümelerinin metrik uzay oldukları gösterildi
ve  
E_c, E_f ve E_b  uzayları arasındaki kapsama bağıntıları
araştırıldı.

Kaynakça

  • [6] P. Diamond, P. Kloeden, “Metric spaces of fuzzy sets”. Fuzzy Sets Syst., vol. 35, pp. 241-249, 1990.
  • [7] R. Goetschel, W. Voxman, “Elementary fuzzy calculus”. Fuzzy Sets Syst., vol. 18, pp. 31–43, 1986.
  • [8] B. Kosko, “Fuzzy entropy and conditioning”, Information Sciences vol. 40, pp. 165–174, 1986.
  • [9] G. Abdollahian, C. M. Taskiran, Z. Pizlo, E. J. Delp, “Camera motion - based analysis of user generated video”.
  • IEEE Transactions on Multimedia archive, vol. 12, pp. 28-41, 2010.
  • [10] M. Matloka, 1986. “Sequences of fuzzy numbers”, BUSEFAL, vol. 28, pp. 28–37.
  • [11] W. Wang, C. Chiu, “The entropy change of fuzzy numbers with arithmetic operations”, Fuzzy Sets Syst., vol.
  • 111, pp. 357–366, 2000.
  • [12] Z. Zararsız, M. Şengönül, “On the gravity of center of sequence of fuzzy numbers”, Annals of Fuzzy
  • Mathematics and Informatics, vol. 6, pp. 479–485, 2013.
  • [13] H.-J. Zimmermann, “Fuzzy set theory-and its applications”, Kluwer Academic Publishers, 2nd revised ed.,
  • USA, 1991, 399 pages.
  • [14] De Luna Bayés, A. “Textbook of clinical electrocardiography”, Martinus Nijhoff Publishers, USA, 496 pages.
  • [15] W. Pedrycz, “Why triangular membership functions?”, Fuzzy Sets Syst., vol. 64, pp. 21–30.
  • [16] W. Pedrycz, F. Gomide, “Fuzzy systems engineering”, Toward Human-Centric Computing, IEEE Press, 2007, 526 pages.
  • [17] G. Petersen, “Regular matrix transformations”, McGraw-Hill Publishing Company Limited, London, 1966.
  • [18] G. G. Lorentz, “A contribution to the theory of divergent series”, Acta Math., vol. 80, pp. 167–190, 1948.
  • [19] S. Atpınar, M. Şengönül, “Entropy convergence for sequences of fuzzy numbers ” presented at the Int. Conf.
  • on Analysis and Its Applications, Kırşehir, Turkey, July 12-15, 2016.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Zarife Zararsız

Yayımlanma Tarihi 1 Haziran 2018
Gönderilme Tarihi 28 Kasım 2016
Kabul Tarihi 29 Ağustos 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 3

Kaynak Göster

APA Zararsız, Z. (2018). Almost Entropy Convergence for Fuzzy Sequence Spaces. Sakarya University Journal of Science, 22(3), 853-861. https://doi.org/10.16984/saufenbilder.270099
AMA Zararsız Z. Almost Entropy Convergence for Fuzzy Sequence Spaces. SAUJS. Haziran 2018;22(3):853-861. doi:10.16984/saufenbilder.270099
Chicago Zararsız, Zarife. “Almost Entropy Convergence for Fuzzy Sequence Spaces”. Sakarya University Journal of Science 22, sy. 3 (Haziran 2018): 853-61. https://doi.org/10.16984/saufenbilder.270099.
EndNote Zararsız Z (01 Haziran 2018) Almost Entropy Convergence for Fuzzy Sequence Spaces. Sakarya University Journal of Science 22 3 853–861.
IEEE Z. Zararsız, “Almost Entropy Convergence for Fuzzy Sequence Spaces”, SAUJS, c. 22, sy. 3, ss. 853–861, 2018, doi: 10.16984/saufenbilder.270099.
ISNAD Zararsız, Zarife. “Almost Entropy Convergence for Fuzzy Sequence Spaces”. Sakarya University Journal of Science 22/3 (Haziran 2018), 853-861. https://doi.org/10.16984/saufenbilder.270099.
JAMA Zararsız Z. Almost Entropy Convergence for Fuzzy Sequence Spaces. SAUJS. 2018;22:853–861.
MLA Zararsız, Zarife. “Almost Entropy Convergence for Fuzzy Sequence Spaces”. Sakarya University Journal of Science, c. 22, sy. 3, 2018, ss. 853-61, doi:10.16984/saufenbilder.270099.
Vancouver Zararsız Z. Almost Entropy Convergence for Fuzzy Sequence Spaces. SAUJS. 2018;22(3):853-61.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.