Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye İnşaat Sektörünün Global Karbon Ayak izi Analizi

Yıl 2018, Cilt: 22 Sayı: 2, 529 - 547, 01.04.2018
https://doi.org/10.16984/saufenbilder.311289

Öz

 Türkiye inşaat
sektörünün ekonomik, çevresel, ve sosyal etkilerinin analizi son yıllarda
önemini giderek artırmıştır. Özellikle artan inşaat, ulaşım, üretim ve enerji
yatırımları Türkiye ve dünya ekonomisine doğrudan ve dolaylı etkiler
yapmaktadır. Bu makalede, Türkiye için önemli bir araştırma boşluğunu doldurmak
amacıyla Türkiye’deki inşaat sektörünün uluslararası tedarik zincirlerini de
kapsayacak bir biçimde ilk, web tabanlı ve küresel karbon ayakizi analizi
yapılmıştır. Avrupa Komisyonu 7. Çerçeve Araştırma Programınca desteklenen
Dünya Girdi-Çıktı Veritabanı’nın ‘World Input-Output Database’ Türkiye inşaat
sektörü için ilk kez kullanılacağı bu çalışmada, Türkiye inşaat sektörünün 2000
ile 2009 yılları arasındaki karbon ayakizi etkilerini ulusal ve küresel çapta
analiz edilmiştir. Bu şekilde Türkiye inşaat sektörlerinin bölgesel ve küresel
düzlemde çevresel etkileri hesaplanarak kapsamlı sürdürülebilirlik analizleri
yapılmıştır. Önerilen modelin benzer versiyonları Amerika Birleşik Devletleri,
Avrupa Birliği, Avusturalya, İngiltere ve Japonya gibi birinci dünya
ülkelerinde stratejik karar vermede kullanıldığı halde, Türkiye için benzer
kapsamlı bir model henüz mevcut değildir. Bu motivasyonla, ‘Küresel Karbon
Ayakizi Muhasebe Modeli’ (Global Carbon Footprint Accounting Tool)
geliştirilmiş ve inşaat sektörü için kapsamlı bir analiz yapılmıştır.
Harvard’lı ünlü ekonomist Wassily Leontief’in ekonomi alanında Nobel Ödülü
kazandığı girdi-çıktı analizinin küresel modele dönüştürülerek kullanılacağı bu
çalışma, zaman serisi analizi, kapsam bazlı karbon ayak izi modellemesi,
üretim-tüketim odaklı, ve küresel etki dağılımı analizi gibi yenilikçi
yöntemlerle kullanıcılara tedarik zinciri odaklı analizler yapma imkanı
sağlamaktadır. Analiz sonuçlarına inşaat sektöründeki büyümeden kaynaklı
salınımlar, 2000-2009 yılları arası verimlilik artısından dolayı azalan karbon
salınımlarına göre daha fazla olduğu için, sektörün bu yıllar arası toplam
salınımı artmıştır. İnşaat sektörünün Kapsam 2 ve 3 karbon salınımları (dolaylı
salınımlar) sektörün toplam emisyonlarının ortalama %80’nine karşılık
gelmektedir ve sektörün emisyonlarını düşürmek için tedarik zinciri ile beraber
değerlendirilmesi gerekmektedir. Araştırma sonucunda geliştirilen küresel
modelin başta bakanlıklar olmak üzere, araştırma enstitüleri ve
üniversitelerdeki karar verme süreçlerinde yaygın bir biçimde kullanılabilmesi
için web-tabanlı bir şekilde internet ortamında da sunulmuştur.


















Kaynakça

  • [1] Brundtland Commission, “Our Common Future,” Apr. 1987.
  • [2] U. Birleşmiş Milletler Çevre Programı (United Nations Environmental Programme, “Towards a green economy,” 2011.
  • [3] Dünya Sürdürülebilir Kalkınma Zirvesi, “Report of the United Nations Conference on Sustainable Development.”
  • [4] J. Elkington, “Cannibals with forks,” triple bottom line 21st century, 1997.
  • [5] M. Kucukvar, “Life Cycle Sustainability Assessment Framework for the U.S. Built Environment,” Doctoral dissertation, University of Central Florida, Orlando, 2013.
  • [6] TÜRKİYE İNŞAAT SANAYİCİLERİ İŞVEREN SENDİKASI (INTES), “İNŞAAT SEKTÖRÜ RAPORU,” 2016.
  • [7] J. B. Guinée, R. Heijungs, G. Huppes, R. Kleijn, A. de Koning, L. van Oers, A. Wegener Sleeswijk, S. Suh, H. A. Udo de Haes, H. de Bruijn, R. van Duin, M. A. J. Huijbregts, and M. Gorrée, life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. 2002.
  • [8] A. Zamagni, J. Guinée, P. Masoni, and R. Heijungs, Life Cycle Sustainability Analysis, in Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.
  • [9] N. C. Onat, M. Kucukvar, and O. Tatari, “Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options,” Energy, vol. 112, pp. 715–728, 2016.
  • [10] Y. Zhao, N. C. Onat, M. Kucukvar, and O. Tatari, “Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment,” Transp. Res. Part D Transp. Environ., vol. 47, pp. 195–207, 2016.
  • [11] N. C. Onat, M. Kucukvar, and O. Tatari, “Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States,” Appl. Energy, vol. 150, pp. 36–49, Jul. 2015.
  • [12] N. C. Onat, M. Kucukvar, and O. Tatari, “Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input–output hybrid life cycle assessment approach,” Build. Environ., vol. 72, pp. 53–62, 2014.
  • [13] S. Junnila, A. Horvath, and A. A. Guggemos, “Life-Cycle Assessment of Office Buildings in Europe and the United States,” J. Infrastruct. Syst., vol. 12, no. 1, pp. 10–17, Mar. 2006.
  • [14] Y. S. Park, G. Egilmez, and M. Kucukvar, “Emergy and end-point impact assessment of agricultural and food production in the United States: A supply chain-linked Ecologically-based Life Cycle Assessment,” Ecol. Indic., vol. 62, pp. 117–137, Mar. 2016.
  • [15] C. Samaras and K. Meisterling, “Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy,” Environ. Sci. Technol., vol. 42, no. 9, pp. 3170–3176, May 2008.
  • [16] N. C. Onat, S. Gumus, M. Kucukvar, and O. Tatari, “Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies,” Sustain. Prod. Consum., Dec. 2015.
  • [17] N. C. Onat, M. Kucukvar, O. Tatari, and Q. P. Zheng, “Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S.,” J. Clean. Prod., vol. 112, pp. 291–307, Jan. 2016.
  • [18] M. Kucukvar and O. Tatari, “A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy,” Energy, vol. 36, no. 11, pp. 6352–6357, Nov. 2011.
  • [19] M. Noori, Y. Zhao, N. C. Onat, S. Gardner, and O. Tatari, “Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings,” Appl. Energy, vol. 168, pp. 146–158, Apr. 2016.
  • [20] D. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009.
  • [21] E. G. Hertwich, “Life cycle approaches to sustainable consumption: a critical review.,” Environ. Sci. Technol., vol. 39, no. 13, pp. 4673–4684, 2005.
  • [22] W. Kloepffer, “Life cycle sustainability assessment of products,” Int. J. Life Cycle Assess., vol. 13, no. 2, pp. 89–95, 2008.
  • [23] J. B. Guinée, R. Heijungs, G. Huppes, A. Zamagni, P. Masoni, R. Buonamici, T. Ekvall, and T. Rydberg, “Life cycle assessment: past, present, and future.,” Environ. Sci. Technol., vol. 45, no. 1, pp. 90–6, Jan. 2011.
  • [24] M. Finkbeiner, E. M. Schau, A. Lehmann, and M. Traverso, “Towards Life Cycle Sustainability Assessment,” Sustainability, vol. 2, no. 10, pp. 3309–3322, Oct. 2010.
  • [25] M. Traverso, M. Finkbeiner, A. Jørgensen, and L. Schneider, “Life Cycle Sustainability Dashboard,” J. Ind. Ecol., vol. 16, no. 5, pp. 680–688, Oct. 2012.
  • [26] N. C. Onat, M. Kucukvar, and O. Tatari, “Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings,” Int. J. Life Cycle Assess., vol. 19, no. 8, pp. 1488–1505, 2014.
  • [27] M. Kucukvar and O. Tatari, “Towards a triple bottom-line sustainability assessment of the US construction industry,” Int. J. Life Cycle Assess., 2013.
  • [28] S. Suh, M. Lenzen, G. J. Treloar, H. Hondo, A. Horvath, G. Huppes, O. Jolliet, U. Klann, W. Krewitt, Y. Moriguchi, J. Munksgaard, and G. Norris, “System Boundary Selection in Life-Cycle Inventories Using Hybrid Approaches,” Environ. Sci. Technol., vol. 38, no. 3, pp. 657–664, Feb. 2004.
  • [29] T. O. Wiedmann, M. Lenzen, and J. R. Barrett, “Companies on the Scale,” J. Ind. Ecol., vol. 13, no. 3, pp. 361–383, 2009.
  • [30] O. Tatari, M. Nazzal, and M. Kucukvar, “Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis,” Resour. Conserv. Recycl., vol. 58, pp. 18–24, Jan. 2012.
  • [31] C. T. Hendrickson, B. L. Lester, and H. S. Matthews, Environmental Life Cycle Assessment of Goods And Services: An Input-Output Approach. Washington DC, 2006.
  • [32] W. Leontief, “Environmental Repercussions and the Economic Structure: An Input-Output Approach,” Rev. Econ. Stat., vol. 52, no. 3, pp. 262–271, 1970.
  • [33] R. E. Miller and P. D. Blair, Input–output analysis: foundations and extensions, 2nd ed. Cambridge, UK: Cambridge University Press, 2009.
  • [34] Carnegie Mellon University Green Design Institute, “Economic Input-Output Life Cycle Assessment (EIO-LCA),” 2008. [Online]. Available: http://www.eiolca.net/index.html.
  • [35] J. Murray and R. Wood, “The sustainability practitioner’s guide to input-output analysis,” 2010.
  • [36] A. Horvath and C. Hendrickson, “Comparison of environmental implications of asphalt and steel-reinforced concrete pavements,” Transp. Res. Rec. …, 1998.
  • [37] C. Hendrickson and A. Horvath, “Resource Use and Environmental Emissions of U.S. Construction Sectors,” Jan. 2000.
  • [38] M. Noori, M. Kucukvar, and O. Tatari, “Economic input-output based sustainability analysis of onshore and offshore wind energy systems,” Int. J. Green Energy, Taylor Fr.
  • [39] M. Noori, M. Kucukvar, and O. Tatari, “Environmental Footprint Analysis of On-shore and Off-shore Wind Energy Technologies,” in The 2012 IEEE ISSST International Symposium on Sustainable Systems and Technology, Co-organized with the IEEE Society on Social Implications of Technology, 2012.
  • [40] N. C. Onat, G. Egilmez, and O. Tatari, “Towards greening the U.S. residential building stock: A system dynamics approach,” Build. Environ., vol. 78, pp. 68–80, Aug. 2014.
  • [41] N. C. Onat, M. Kucukvar, and O. Tatari, “Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States,” Appl. Energy, vol. 150, 2015.
  • [42] N. C. Onat, M. Kucukvar, and O. Tatari, “Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input-output hybrid life cycle assessment approach,” Build. Environ., vol. 72, 2014.
  • [43] O. Tatari, M. Kucukvar, and N. C. Onat, “Towards a Triple Bottom Line Life Cycle Sustainability Assessment of Buildings,” in Science for Sustainable Construction and Manufacturing Workshop Volume I. Position Papers and Findings, 2015, p. 226.
  • [44] T. Ercan, N. C. Onat, and O. Tatari, “Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach,” J. Clean. Prod., vol. 133, pp. 1260–1276, 2016.
  • [45] T. Ercan, N. C. Onat, O. Tatari, and J.-D. Mathias, “Public transportation adoption requires a paradigm shift in urban development structure,” J. Clean. Prod., 2016.
  • [46] N. C. Onat, M. Kucukvar, O. Tatari, and G. Egilmez, “Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles,” Int. J. Life Cycle Assess., vol. 21, no. 7, pp. 1009–1034, Jul. 2016.
  • [47] N. C. Onat, “A macro-level sustainability assessment framework for optimal distribution of alternative passenger vehicles,” University of Central Florida, 2015.
  • [48] N. C. Onat, M. Noori, M. Kucukvar, Y. Zhao, O. Tatari, and M. Chester, “Exploring the suitability of electric vehicles in the United States,” Energy, vol. 121, 2017.
  • [49] M. Alirezaei, N. C. Onat, O. Tatari, and M. Abdel-Aty, “The Climate Change-Road Safety-Economy Nexus: A System Dynamics Approach to Understanding Complex Interdependencies,” Systems, vol. 5, no. 1, p. 6, 2017.
  • [50] O. Tatari, N. Onat, M. Abdel-Aty, and M. Alirezaei, “Dynamic Simulation Models for Road Safety and Its Sustainability Implications,” 2015. [51] N. C. Onat, M. Kucukvar, O. Tatari, and G. Egilmez, “Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles,” Int. J. Life Cycle Assess., vol. 21, no. 7, 2016.
  • [52] N. C. Onat, M. Kucukvar, and O. Tatari, “Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles,” Sustainability, vol. 6, no. 12, pp. 9305–9342, Dec. 2014.
  • [53] G. Egilmez, M. Kucukvar, O. Tatari, and M. K. S. Bhutta, “Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach,” Resour. Conserv. Recycl., vol. 82, pp. 8–20, Jan. 2014.
  • [54] M. Kucukvar, G. Egilmez, N. C. Onat, and H. Samadi, “A global, scope-based carbon footprint modeling for effective carbon reduction policies: Lessons from the Turkish manufacturing,” Sustain. Prod. Consum., vol. 1, pp. 47–66, Jan. 2015.
  • [55] T. Wiedmann, H. C. Wilting, M. Lenzen, S. Lutter, and V. Palm, “Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input–output analysis,” Ecol. Econ., vol. 70, no. 11, pp. 1937–1945, Sep. 2011.
  • [56] B. Foran, M. Lenzen, and C. Dey, “Balancing Act a Triple Bottom Line Analysis of the Australian Economy Volume 1,” in Balancing Act, vol. 358, no. 9296, Csiro, Ed. CSIRO, 2005, p. 277.
  • [57] T. Wiedmann and M. Lenzen, “Triple-Bottom-Line Accounting of Social, Economic and Environmental Indicators-A New Life-Cycle Software Tool for UK Businesses,” … Creat. Cult. Perth. Retrieved from …, 2006.
  • [58] B. Foran, M. Lenzen, and C. Dey, “Balancing Act: a triple bottom line analysis of the Australian economy,” 2011.
  • [59] T. Wiedmann and J. Minx, “A Definition of ‘ Carbon Footprint,” Science (80-. )., vol. 1, no. 1, pp. 1–11, 2007.
  • [60] A. Malik, M. Lenzen, and A. Geschke, “Triple bottom line study of a lignocellulosic biofuel industry,” GCB Bioenergy, vol. 8, no. 1, pp. 96–110, Jan. 2016.
  • [61] M. Kucukvar and O. Tatari, “Towards a triple bottom-line sustainability assessment of the U.S. construction industry,” Int. J. Life Cycle Assess., vol. 18, no. 5, pp. 958–972, Feb. 2013.
  • [62] M. Noori, “Sustainability assessment of wind energy for buildings.” University of Central Florida, 2013.
  • [63] T. Ercan, M. Kucukvar, O. Tatari, and H. Al-Deek, “Congestion Relief Based on Intelligent Transportation Systems in Florida,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2380, pp. 81–89, Dec. 2013.
  • [64] O. Tatari and M. Kucukvar, “Eco-Efficiency of Construction Materials: Data Envelopment Analysis,” J. Constr. Eng. Manag., vol. 138, no. 6, pp. 733–741, Jun. 2012.
  • [65] M. Kucukvar, M. Noori, G. Egilmez, and O. Tatari, “Stochastic decision modeling for sustainable pavement designs,” Int. J. Life Cycle Assess., vol. 19, no. 6, pp. 1185–1199, Jun. 2014.
  • [66] M. Kucukvar, G. Egilmez, and O. Tatari, “Sustainability assessment of U.S. final consumption and investments: triple-bottom-line input–output analysis,” J. Clean. Prod., vol. 81, pp. 234–243, Oct. 2014.
  • [67] G. Egilmez, M. Kucukvar, and O. Tatari, “Sustainability assessment of U.S. manufacturing sectors: an economic input output-based frontier approach,” J. Clean. Prod., vol. 53, pp. 91–102, Aug. 2013.
  • [68] A. Tukker and E. Dietzenbacher, “Global Multiregional Input–Output Frameworks: An Introduction and Outlook,” Econ. Syst. Res., vol. 25, no. 1, pp. 1–19, Mar. 2013.
  • [69] M. Lenzen, A. Geschke, T. Wiedmann, J. Lane, N. Anderson, T. Baynes, J. Boland, P. Daniels, C. Dey, J. Fry, M. Hadjikakou, S. Kenway, A. Malik, D. Moran, J. Murray, S. Nettleton, L. Poruschi, C. Reynolds, H. Rowley, J. Ugon, D. Webb, and J. West, “Compiling and using input–output frameworks through collaborative virtual laboratories,” Sci. Total Environ., vol. 485, pp. 241–251, 2014.
  • [70] R. Hoekstra, “A complete database of peer-reviewed articles on environmentally extended input-output analysis,” 2010.
  • [71] E. Dietzenbacher, M. Lenzen, B. Los, D. Guan, M. L. Lahr, F. Sancho, S. Suh, and C. Yang, “INPUT–OUTPUT ANALYSIS: THE NEXT 25 YEARS,” Econ. Syst. Res., pp. 1–21, Oct. 2013.
  • [72] N. Onat, M. Kucukvar, A. Halog, and S. Cloutier, “Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives,” Sustain. 2017, Vol. 9, Page 706, vol. 9, no. 5, p. 706, 2017.
  • [73] R. Ewing and F. Rong, “The impact of urban form on U.S. residential energy use,” Hous. Policy Debate, vol. 19, no. 1, pp. 1–30, Jan. 2008.
  • [74] E. G. Hertwich and G. P. Peters, “Carbon Footprint of Nations: A Global, Trade-Linked Analysis,” Environ. Sci. Technol., vol. 43, no. 16, pp. 6414–6420, Aug. 2009.
  • [75] E. Dietzenbacher, B. Los, R. Stehrer, M. Timmer, and G. de Vries, “The Construction of World Input–Output Tables in the WIOD Project,” Econ. Syst. Res., vol. 25, no. 1, pp. 71–98, Mar. 2013.
  • [76] M. Lenzen, D. Moran, K. Kanemoto, and A. Geschke, “Building EORA: A Global Multi-Region Input–Output Database at High Country And Sector Resolution,” Econ. Syst. Res., vol. 25, no. 1, pp. 20–49, Mar. 2013.
  • [77] A. Tukker, E. Poliakov, R. Heijungs, T. Hawkins, F. Neuwahl, J. M. Rueda-Cantuche, S. Giljum, S. Moll, J. Oosterhaven, and M. Bouwmeester, “Towards a global multi-regional environmentally extended input–output database,” Ecol. Econ., vol. 68, no. 7, pp. 1928–1937, May 2009.
  • [78] J. Kovanda and J. Weinzettel, “The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension,” Environ. Sci. Policy, vol. 29, pp. 71–80, 2013.
  • [79] K. Steen-Olsen, J. Weinzettel, G. Cranston, A. E. Ercin, and E. G. Hertwich, “Carbon, Land, and Water Footprint Accounts for the European Union: Consumption, Production, and Displacements through International Trade,” Environ. Sci. Technol., vol. 46, no. 20, pp. 10883–10891, Oct. 2012.
  • [80] R. M. Andrew and G. P. Peters, “A MULTI-REGION INPUT–OUTPUT TABLE BASED ON THE GLOBAL TRADE ANALYSIS PROJECT DATABASE (GTAP-MRIO),” Econ. Syst. Res., vol. 25, no. 1, pp. 99–121, Mar. 2013.
  • [81] K. S. Wiebe, M. Bruckner, S. Giljum, and C. Lutz, “CALCULATING ENERGY-RELATED CO 2 EMISSIONS EMBODIED IN INTERNATIONAL TRADE USING A GLOBAL INPUT–OUTPUT MODEL,” Econ. Syst. Res., vol. 24, no. 2, pp. 113–139, Jun. 2012.
  • [82] T. O. Wiedmann, H. Schandl, M. Lenzen, D. Moran, S. Suh, J. West, and K. Kanemoto, “The material footprint of nations.,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 20, pp. 6271–6, May 2015.
  • [83] M. Kucukvar, B. Cansev, G. Egilmez, N. C. Onat, and H. Samadi, “Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries,” Appl. Energy, Apr. 2016.
  • [84] M. Kucukvar and H. Samadi, “Linking National Food Production to Global Supply Chain Impacts for the Energy-Climate Challenge: The Cases of the EU-27 and Turkey,” J. Clean. Prod., vol. 108, pp. 395–408, Sep. 2015.
  • [85] WBCSD & WRI, “Corporate value chain (Scope 3) accounting and reporting standard,” Geneva, Switzerland, 2011.
  • [86] GHG Protocol Initiative, “Guidance for Calculating Scope 3 Emissions,” 2011. [Online]. Available: http://www.ghgprotocol.org/files/ghgp/tools/GHG Protocol Guidance for Calculating Scope 3 Emissions - DRAFT August 2011.pdf.
  • [87] Y. A. Huang, C. L. Weber, and H. S. Matthews, “Categorization of Scope 3 emissions for streamlined enterprise carbon footprinting.,” Environ. Sci. Technol., vol. 43, no. 22, pp. 8509–15, Nov. 2009.
  • [88] K.-H. Lee, “Integrating carbon footprint into supply chain management: the case of Hyundai Motor Company (HMC) in the automobile industry,” J. Clean. Prod., vol. 19, no. 11, pp. 1216–1223, 2011.
  • [89] T.C. Çevre ve Şehircilik Bakanlığı, “Sera gazlarının izlenmesi ve raporlanması,” 2014. [Online]. Available: http://www.resmigazete.gov.tr/eskiler/2014/07/20140722-5.htm.
  • [90] T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Enerji verimliliği stratejisi makalesi,” 2013. [Online]. Available: http://www.eie.gov.tr/verimlilik/document/Energy_Efficiency_Strategy_Paper.pdf.
  • [91] T. C. K. Bakanlığı, “10. Kalkınma Planı: 2014-2018,” 2013. [Online]. Available: http://www.kalkinma.gov.tr/Lists/Yaynlar/Attachments/518/Onuncu Kalkınma Planı.pdf.
  • [92] Foran, B., Lenzen, M., Moran, D., Alsamawi., Geschke, A., Kanemoto, K., “Balancing the G20’s Global Impact. KGM & Associates,” University of Sydney, Institute for Land, Water and Society, 2014. [Online]. Available: http://apo.org.au/node/42294.
  • [93] O. Çalışkan, E. T., Aydoğuş, “Türkiye Ekonomisinde Endüstriyel Büyümenin Kaynakları: Girdi-Çıktı Modeli ile Ampirik Bir Analiz (1985-2002),” Ege Akad. Bakış, vol. 11, no. 4, pp. 499–510, 2011.
  • [94] S. Suh, P. Ferrao, and J. Nhambiu, Handbook of Input-Output Economics in Industrial Ecology. New York: Springer, 2009.
  • [95] M. Timmer, A. Erumban, and R. Gouma, “The world input-output database (WIOD): contents, sources and methods,” WIOD Working Paper Number 10, 2012. [Online]. Available: http://www.wiod.org/publications/papers/wiod10.pdf. [Accessed: 26-Nov-2014].
  • [96] Eurostat, “Eurostat manual of supply, use and input–output tables.,” Luxembourg, 2008.
  • [97] United Nations, “UN (1999) Studies in methods: handbook of national accounting,” New York, USA, 1999.

Global Carbon Footprint Analysis of Turkish Construction Industry

Yıl 2018, Cilt: 22 Sayı: 2, 529 - 547, 01.04.2018
https://doi.org/10.16984/saufenbilder.311289

Öz

The analysis of economic,
social, and environmental impacts (termed as triple-bottom-line) of Turkish
sectors has become a topic of considerable interest. Especially, there are
significant regional and global effects of increasing construction,
transportation, manufacturing, and energy investments in Turkey. In this study,
with the aim of filling an important research gap, Turkish construction sector,
including its supply chain, is analyzed using a web-based global carbon footprint
analysis for the first time. In this study, using the World Input-Output
Database, which is funded by the European Commission under the 7th Research
Programme for the Turkish Construction industry for the first time, carbon
footprint of the Turkish construction sector is analyzed both at national and
global scales in between 2000 and 2009. A comprehensive sustainability analysis
of Turkish construction sector has been conducted considering regional and
global environmental impacts. Although similar modeling approaches have been
used in various developed nations including United States of America, European
Union, Australia, Japan, and United Kingdom, for strategic decision making,
there is no such holistic sustainability assessment platform for Turkish
economy. With this motivation, this study aims to develop a first, web-based
global sustainability assessment platform and used for the Turkish construction
industry. Using the extended version of Wassily Leontief’s (a well-known
economist from Harvard University) Nobel awarded input-output analysis as a
global multiregional input-output model, the model allows users to conduct
novel analyses such as time-series, scope-based carbon footprint,
production-consumption based, and global impact distribution analyses.
According to analysis results, because carbon emissions due to growth in
Turkish construction sector are greater the emission reduction stemming from
efficiency increases in between 2000-2009, the total carbon emissions of the
sector increased in between these years. Scope 2 and 3 emissions (indirect
emissions) of the sector is %80 of the sector’s total and the supply chain of
the sector needs to be considered to be able to reduce the sector’s emissions.
The proposed model is disseminated through an online platform to serve in
decision-making processes in ministries, research institutes, universities, and
non-profit organizations.

Kaynakça

  • [1] Brundtland Commission, “Our Common Future,” Apr. 1987.
  • [2] U. Birleşmiş Milletler Çevre Programı (United Nations Environmental Programme, “Towards a green economy,” 2011.
  • [3] Dünya Sürdürülebilir Kalkınma Zirvesi, “Report of the United Nations Conference on Sustainable Development.”
  • [4] J. Elkington, “Cannibals with forks,” triple bottom line 21st century, 1997.
  • [5] M. Kucukvar, “Life Cycle Sustainability Assessment Framework for the U.S. Built Environment,” Doctoral dissertation, University of Central Florida, Orlando, 2013.
  • [6] TÜRKİYE İNŞAAT SANAYİCİLERİ İŞVEREN SENDİKASI (INTES), “İNŞAAT SEKTÖRÜ RAPORU,” 2016.
  • [7] J. B. Guinée, R. Heijungs, G. Huppes, R. Kleijn, A. de Koning, L. van Oers, A. Wegener Sleeswijk, S. Suh, H. A. Udo de Haes, H. de Bruijn, R. van Duin, M. A. J. Huijbregts, and M. Gorrée, life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. 2002.
  • [8] A. Zamagni, J. Guinée, P. Masoni, and R. Heijungs, Life Cycle Sustainability Analysis, in Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.
  • [9] N. C. Onat, M. Kucukvar, and O. Tatari, “Uncertainty-embedded dynamic life cycle sustainability assessment framework: An ex-ante perspective on the impacts of alternative vehicle options,” Energy, vol. 112, pp. 715–728, 2016.
  • [10] Y. Zhao, N. C. Onat, M. Kucukvar, and O. Tatari, “Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment,” Transp. Res. Part D Transp. Environ., vol. 47, pp. 195–207, 2016.
  • [11] N. C. Onat, M. Kucukvar, and O. Tatari, “Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States,” Appl. Energy, vol. 150, pp. 36–49, Jul. 2015.
  • [12] N. C. Onat, M. Kucukvar, and O. Tatari, “Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input–output hybrid life cycle assessment approach,” Build. Environ., vol. 72, pp. 53–62, 2014.
  • [13] S. Junnila, A. Horvath, and A. A. Guggemos, “Life-Cycle Assessment of Office Buildings in Europe and the United States,” J. Infrastruct. Syst., vol. 12, no. 1, pp. 10–17, Mar. 2006.
  • [14] Y. S. Park, G. Egilmez, and M. Kucukvar, “Emergy and end-point impact assessment of agricultural and food production in the United States: A supply chain-linked Ecologically-based Life Cycle Assessment,” Ecol. Indic., vol. 62, pp. 117–137, Mar. 2016.
  • [15] C. Samaras and K. Meisterling, “Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy,” Environ. Sci. Technol., vol. 42, no. 9, pp. 3170–3176, May 2008.
  • [16] N. C. Onat, S. Gumus, M. Kucukvar, and O. Tatari, “Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies,” Sustain. Prod. Consum., Dec. 2015.
  • [17] N. C. Onat, M. Kucukvar, O. Tatari, and Q. P. Zheng, “Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S.,” J. Clean. Prod., vol. 112, pp. 291–307, Jan. 2016.
  • [18] M. Kucukvar and O. Tatari, “A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy,” Energy, vol. 36, no. 11, pp. 6352–6357, Nov. 2011.
  • [19] M. Noori, Y. Zhao, N. C. Onat, S. Gardner, and O. Tatari, “Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings,” Appl. Energy, vol. 168, pp. 146–158, Apr. 2016.
  • [20] D. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009.
  • [21] E. G. Hertwich, “Life cycle approaches to sustainable consumption: a critical review.,” Environ. Sci. Technol., vol. 39, no. 13, pp. 4673–4684, 2005.
  • [22] W. Kloepffer, “Life cycle sustainability assessment of products,” Int. J. Life Cycle Assess., vol. 13, no. 2, pp. 89–95, 2008.
  • [23] J. B. Guinée, R. Heijungs, G. Huppes, A. Zamagni, P. Masoni, R. Buonamici, T. Ekvall, and T. Rydberg, “Life cycle assessment: past, present, and future.,” Environ. Sci. Technol., vol. 45, no. 1, pp. 90–6, Jan. 2011.
  • [24] M. Finkbeiner, E. M. Schau, A. Lehmann, and M. Traverso, “Towards Life Cycle Sustainability Assessment,” Sustainability, vol. 2, no. 10, pp. 3309–3322, Oct. 2010.
  • [25] M. Traverso, M. Finkbeiner, A. Jørgensen, and L. Schneider, “Life Cycle Sustainability Dashboard,” J. Ind. Ecol., vol. 16, no. 5, pp. 680–688, Oct. 2012.
  • [26] N. C. Onat, M. Kucukvar, and O. Tatari, “Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings,” Int. J. Life Cycle Assess., vol. 19, no. 8, pp. 1488–1505, 2014.
  • [27] M. Kucukvar and O. Tatari, “Towards a triple bottom-line sustainability assessment of the US construction industry,” Int. J. Life Cycle Assess., 2013.
  • [28] S. Suh, M. Lenzen, G. J. Treloar, H. Hondo, A. Horvath, G. Huppes, O. Jolliet, U. Klann, W. Krewitt, Y. Moriguchi, J. Munksgaard, and G. Norris, “System Boundary Selection in Life-Cycle Inventories Using Hybrid Approaches,” Environ. Sci. Technol., vol. 38, no. 3, pp. 657–664, Feb. 2004.
  • [29] T. O. Wiedmann, M. Lenzen, and J. R. Barrett, “Companies on the Scale,” J. Ind. Ecol., vol. 13, no. 3, pp. 361–383, 2009.
  • [30] O. Tatari, M. Nazzal, and M. Kucukvar, “Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis,” Resour. Conserv. Recycl., vol. 58, pp. 18–24, Jan. 2012.
  • [31] C. T. Hendrickson, B. L. Lester, and H. S. Matthews, Environmental Life Cycle Assessment of Goods And Services: An Input-Output Approach. Washington DC, 2006.
  • [32] W. Leontief, “Environmental Repercussions and the Economic Structure: An Input-Output Approach,” Rev. Econ. Stat., vol. 52, no. 3, pp. 262–271, 1970.
  • [33] R. E. Miller and P. D. Blair, Input–output analysis: foundations and extensions, 2nd ed. Cambridge, UK: Cambridge University Press, 2009.
  • [34] Carnegie Mellon University Green Design Institute, “Economic Input-Output Life Cycle Assessment (EIO-LCA),” 2008. [Online]. Available: http://www.eiolca.net/index.html.
  • [35] J. Murray and R. Wood, “The sustainability practitioner’s guide to input-output analysis,” 2010.
  • [36] A. Horvath and C. Hendrickson, “Comparison of environmental implications of asphalt and steel-reinforced concrete pavements,” Transp. Res. Rec. …, 1998.
  • [37] C. Hendrickson and A. Horvath, “Resource Use and Environmental Emissions of U.S. Construction Sectors,” Jan. 2000.
  • [38] M. Noori, M. Kucukvar, and O. Tatari, “Economic input-output based sustainability analysis of onshore and offshore wind energy systems,” Int. J. Green Energy, Taylor Fr.
  • [39] M. Noori, M. Kucukvar, and O. Tatari, “Environmental Footprint Analysis of On-shore and Off-shore Wind Energy Technologies,” in The 2012 IEEE ISSST International Symposium on Sustainable Systems and Technology, Co-organized with the IEEE Society on Social Implications of Technology, 2012.
  • [40] N. C. Onat, G. Egilmez, and O. Tatari, “Towards greening the U.S. residential building stock: A system dynamics approach,” Build. Environ., vol. 78, pp. 68–80, Aug. 2014.
  • [41] N. C. Onat, M. Kucukvar, and O. Tatari, “Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States,” Appl. Energy, vol. 150, 2015.
  • [42] N. C. Onat, M. Kucukvar, and O. Tatari, “Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input-output hybrid life cycle assessment approach,” Build. Environ., vol. 72, 2014.
  • [43] O. Tatari, M. Kucukvar, and N. C. Onat, “Towards a Triple Bottom Line Life Cycle Sustainability Assessment of Buildings,” in Science for Sustainable Construction and Manufacturing Workshop Volume I. Position Papers and Findings, 2015, p. 226.
  • [44] T. Ercan, N. C. Onat, and O. Tatari, “Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach,” J. Clean. Prod., vol. 133, pp. 1260–1276, 2016.
  • [45] T. Ercan, N. C. Onat, O. Tatari, and J.-D. Mathias, “Public transportation adoption requires a paradigm shift in urban development structure,” J. Clean. Prod., 2016.
  • [46] N. C. Onat, M. Kucukvar, O. Tatari, and G. Egilmez, “Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles,” Int. J. Life Cycle Assess., vol. 21, no. 7, pp. 1009–1034, Jul. 2016.
  • [47] N. C. Onat, “A macro-level sustainability assessment framework for optimal distribution of alternative passenger vehicles,” University of Central Florida, 2015.
  • [48] N. C. Onat, M. Noori, M. Kucukvar, Y. Zhao, O. Tatari, and M. Chester, “Exploring the suitability of electric vehicles in the United States,” Energy, vol. 121, 2017.
  • [49] M. Alirezaei, N. C. Onat, O. Tatari, and M. Abdel-Aty, “The Climate Change-Road Safety-Economy Nexus: A System Dynamics Approach to Understanding Complex Interdependencies,” Systems, vol. 5, no. 1, p. 6, 2017.
  • [50] O. Tatari, N. Onat, M. Abdel-Aty, and M. Alirezaei, “Dynamic Simulation Models for Road Safety and Its Sustainability Implications,” 2015. [51] N. C. Onat, M. Kucukvar, O. Tatari, and G. Egilmez, “Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles,” Int. J. Life Cycle Assess., vol. 21, no. 7, 2016.
  • [52] N. C. Onat, M. Kucukvar, and O. Tatari, “Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles,” Sustainability, vol. 6, no. 12, pp. 9305–9342, Dec. 2014.
  • [53] G. Egilmez, M. Kucukvar, O. Tatari, and M. K. S. Bhutta, “Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach,” Resour. Conserv. Recycl., vol. 82, pp. 8–20, Jan. 2014.
  • [54] M. Kucukvar, G. Egilmez, N. C. Onat, and H. Samadi, “A global, scope-based carbon footprint modeling for effective carbon reduction policies: Lessons from the Turkish manufacturing,” Sustain. Prod. Consum., vol. 1, pp. 47–66, Jan. 2015.
  • [55] T. Wiedmann, H. C. Wilting, M. Lenzen, S. Lutter, and V. Palm, “Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input–output analysis,” Ecol. Econ., vol. 70, no. 11, pp. 1937–1945, Sep. 2011.
  • [56] B. Foran, M. Lenzen, and C. Dey, “Balancing Act a Triple Bottom Line Analysis of the Australian Economy Volume 1,” in Balancing Act, vol. 358, no. 9296, Csiro, Ed. CSIRO, 2005, p. 277.
  • [57] T. Wiedmann and M. Lenzen, “Triple-Bottom-Line Accounting of Social, Economic and Environmental Indicators-A New Life-Cycle Software Tool for UK Businesses,” … Creat. Cult. Perth. Retrieved from …, 2006.
  • [58] B. Foran, M. Lenzen, and C. Dey, “Balancing Act: a triple bottom line analysis of the Australian economy,” 2011.
  • [59] T. Wiedmann and J. Minx, “A Definition of ‘ Carbon Footprint,” Science (80-. )., vol. 1, no. 1, pp. 1–11, 2007.
  • [60] A. Malik, M. Lenzen, and A. Geschke, “Triple bottom line study of a lignocellulosic biofuel industry,” GCB Bioenergy, vol. 8, no. 1, pp. 96–110, Jan. 2016.
  • [61] M. Kucukvar and O. Tatari, “Towards a triple bottom-line sustainability assessment of the U.S. construction industry,” Int. J. Life Cycle Assess., vol. 18, no. 5, pp. 958–972, Feb. 2013.
  • [62] M. Noori, “Sustainability assessment of wind energy for buildings.” University of Central Florida, 2013.
  • [63] T. Ercan, M. Kucukvar, O. Tatari, and H. Al-Deek, “Congestion Relief Based on Intelligent Transportation Systems in Florida,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2380, pp. 81–89, Dec. 2013.
  • [64] O. Tatari and M. Kucukvar, “Eco-Efficiency of Construction Materials: Data Envelopment Analysis,” J. Constr. Eng. Manag., vol. 138, no. 6, pp. 733–741, Jun. 2012.
  • [65] M. Kucukvar, M. Noori, G. Egilmez, and O. Tatari, “Stochastic decision modeling for sustainable pavement designs,” Int. J. Life Cycle Assess., vol. 19, no. 6, pp. 1185–1199, Jun. 2014.
  • [66] M. Kucukvar, G. Egilmez, and O. Tatari, “Sustainability assessment of U.S. final consumption and investments: triple-bottom-line input–output analysis,” J. Clean. Prod., vol. 81, pp. 234–243, Oct. 2014.
  • [67] G. Egilmez, M. Kucukvar, and O. Tatari, “Sustainability assessment of U.S. manufacturing sectors: an economic input output-based frontier approach,” J. Clean. Prod., vol. 53, pp. 91–102, Aug. 2013.
  • [68] A. Tukker and E. Dietzenbacher, “Global Multiregional Input–Output Frameworks: An Introduction and Outlook,” Econ. Syst. Res., vol. 25, no. 1, pp. 1–19, Mar. 2013.
  • [69] M. Lenzen, A. Geschke, T. Wiedmann, J. Lane, N. Anderson, T. Baynes, J. Boland, P. Daniels, C. Dey, J. Fry, M. Hadjikakou, S. Kenway, A. Malik, D. Moran, J. Murray, S. Nettleton, L. Poruschi, C. Reynolds, H. Rowley, J. Ugon, D. Webb, and J. West, “Compiling and using input–output frameworks through collaborative virtual laboratories,” Sci. Total Environ., vol. 485, pp. 241–251, 2014.
  • [70] R. Hoekstra, “A complete database of peer-reviewed articles on environmentally extended input-output analysis,” 2010.
  • [71] E. Dietzenbacher, M. Lenzen, B. Los, D. Guan, M. L. Lahr, F. Sancho, S. Suh, and C. Yang, “INPUT–OUTPUT ANALYSIS: THE NEXT 25 YEARS,” Econ. Syst. Res., pp. 1–21, Oct. 2013.
  • [72] N. Onat, M. Kucukvar, A. Halog, and S. Cloutier, “Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives,” Sustain. 2017, Vol. 9, Page 706, vol. 9, no. 5, p. 706, 2017.
  • [73] R. Ewing and F. Rong, “The impact of urban form on U.S. residential energy use,” Hous. Policy Debate, vol. 19, no. 1, pp. 1–30, Jan. 2008.
  • [74] E. G. Hertwich and G. P. Peters, “Carbon Footprint of Nations: A Global, Trade-Linked Analysis,” Environ. Sci. Technol., vol. 43, no. 16, pp. 6414–6420, Aug. 2009.
  • [75] E. Dietzenbacher, B. Los, R. Stehrer, M. Timmer, and G. de Vries, “The Construction of World Input–Output Tables in the WIOD Project,” Econ. Syst. Res., vol. 25, no. 1, pp. 71–98, Mar. 2013.
  • [76] M. Lenzen, D. Moran, K. Kanemoto, and A. Geschke, “Building EORA: A Global Multi-Region Input–Output Database at High Country And Sector Resolution,” Econ. Syst. Res., vol. 25, no. 1, pp. 20–49, Mar. 2013.
  • [77] A. Tukker, E. Poliakov, R. Heijungs, T. Hawkins, F. Neuwahl, J. M. Rueda-Cantuche, S. Giljum, S. Moll, J. Oosterhaven, and M. Bouwmeester, “Towards a global multi-regional environmentally extended input–output database,” Ecol. Econ., vol. 68, no. 7, pp. 1928–1937, May 2009.
  • [78] J. Kovanda and J. Weinzettel, “The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension,” Environ. Sci. Policy, vol. 29, pp. 71–80, 2013.
  • [79] K. Steen-Olsen, J. Weinzettel, G. Cranston, A. E. Ercin, and E. G. Hertwich, “Carbon, Land, and Water Footprint Accounts for the European Union: Consumption, Production, and Displacements through International Trade,” Environ. Sci. Technol., vol. 46, no. 20, pp. 10883–10891, Oct. 2012.
  • [80] R. M. Andrew and G. P. Peters, “A MULTI-REGION INPUT–OUTPUT TABLE BASED ON THE GLOBAL TRADE ANALYSIS PROJECT DATABASE (GTAP-MRIO),” Econ. Syst. Res., vol. 25, no. 1, pp. 99–121, Mar. 2013.
  • [81] K. S. Wiebe, M. Bruckner, S. Giljum, and C. Lutz, “CALCULATING ENERGY-RELATED CO 2 EMISSIONS EMBODIED IN INTERNATIONAL TRADE USING A GLOBAL INPUT–OUTPUT MODEL,” Econ. Syst. Res., vol. 24, no. 2, pp. 113–139, Jun. 2012.
  • [82] T. O. Wiedmann, H. Schandl, M. Lenzen, D. Moran, S. Suh, J. West, and K. Kanemoto, “The material footprint of nations.,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 20, pp. 6271–6, May 2015.
  • [83] M. Kucukvar, B. Cansev, G. Egilmez, N. C. Onat, and H. Samadi, “Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries,” Appl. Energy, Apr. 2016.
  • [84] M. Kucukvar and H. Samadi, “Linking National Food Production to Global Supply Chain Impacts for the Energy-Climate Challenge: The Cases of the EU-27 and Turkey,” J. Clean. Prod., vol. 108, pp. 395–408, Sep. 2015.
  • [85] WBCSD & WRI, “Corporate value chain (Scope 3) accounting and reporting standard,” Geneva, Switzerland, 2011.
  • [86] GHG Protocol Initiative, “Guidance for Calculating Scope 3 Emissions,” 2011. [Online]. Available: http://www.ghgprotocol.org/files/ghgp/tools/GHG Protocol Guidance for Calculating Scope 3 Emissions - DRAFT August 2011.pdf.
  • [87] Y. A. Huang, C. L. Weber, and H. S. Matthews, “Categorization of Scope 3 emissions for streamlined enterprise carbon footprinting.,” Environ. Sci. Technol., vol. 43, no. 22, pp. 8509–15, Nov. 2009.
  • [88] K.-H. Lee, “Integrating carbon footprint into supply chain management: the case of Hyundai Motor Company (HMC) in the automobile industry,” J. Clean. Prod., vol. 19, no. 11, pp. 1216–1223, 2011.
  • [89] T.C. Çevre ve Şehircilik Bakanlığı, “Sera gazlarının izlenmesi ve raporlanması,” 2014. [Online]. Available: http://www.resmigazete.gov.tr/eskiler/2014/07/20140722-5.htm.
  • [90] T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “Enerji verimliliği stratejisi makalesi,” 2013. [Online]. Available: http://www.eie.gov.tr/verimlilik/document/Energy_Efficiency_Strategy_Paper.pdf.
  • [91] T. C. K. Bakanlığı, “10. Kalkınma Planı: 2014-2018,” 2013. [Online]. Available: http://www.kalkinma.gov.tr/Lists/Yaynlar/Attachments/518/Onuncu Kalkınma Planı.pdf.
  • [92] Foran, B., Lenzen, M., Moran, D., Alsamawi., Geschke, A., Kanemoto, K., “Balancing the G20’s Global Impact. KGM & Associates,” University of Sydney, Institute for Land, Water and Society, 2014. [Online]. Available: http://apo.org.au/node/42294.
  • [93] O. Çalışkan, E. T., Aydoğuş, “Türkiye Ekonomisinde Endüstriyel Büyümenin Kaynakları: Girdi-Çıktı Modeli ile Ampirik Bir Analiz (1985-2002),” Ege Akad. Bakış, vol. 11, no. 4, pp. 499–510, 2011.
  • [94] S. Suh, P. Ferrao, and J. Nhambiu, Handbook of Input-Output Economics in Industrial Ecology. New York: Springer, 2009.
  • [95] M. Timmer, A. Erumban, and R. Gouma, “The world input-output database (WIOD): contents, sources and methods,” WIOD Working Paper Number 10, 2012. [Online]. Available: http://www.wiod.org/publications/papers/wiod10.pdf. [Accessed: 26-Nov-2014].
  • [96] Eurostat, “Eurostat manual of supply, use and input–output tables.,” Luxembourg, 2008.
  • [97] United Nations, “UN (1999) Studies in methods: handbook of national accounting,” New York, USA, 1999.
Toplam 96 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Nuri Cihat Onat

Yayımlanma Tarihi 1 Nisan 2018
Gönderilme Tarihi 9 Mayıs 2017
Kabul Tarihi 23 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 2

Kaynak Göster

APA Onat, N. C. (2018). Türkiye İnşaat Sektörünün Global Karbon Ayak izi Analizi. Sakarya University Journal of Science, 22(2), 529-547. https://doi.org/10.16984/saufenbilder.311289
AMA Onat NC. Türkiye İnşaat Sektörünün Global Karbon Ayak izi Analizi. SAUJS. Nisan 2018;22(2):529-547. doi:10.16984/saufenbilder.311289
Chicago Onat, Nuri Cihat. “Türkiye İnşaat Sektörünün Global Karbon Ayak Izi Analizi”. Sakarya University Journal of Science 22, sy. 2 (Nisan 2018): 529-47. https://doi.org/10.16984/saufenbilder.311289.
EndNote Onat NC (01 Nisan 2018) Türkiye İnşaat Sektörünün Global Karbon Ayak izi Analizi. Sakarya University Journal of Science 22 2 529–547.
IEEE N. C. Onat, “Türkiye İnşaat Sektörünün Global Karbon Ayak izi Analizi”, SAUJS, c. 22, sy. 2, ss. 529–547, 2018, doi: 10.16984/saufenbilder.311289.
ISNAD Onat, Nuri Cihat. “Türkiye İnşaat Sektörünün Global Karbon Ayak Izi Analizi”. Sakarya University Journal of Science 22/2 (Nisan 2018), 529-547. https://doi.org/10.16984/saufenbilder.311289.
JAMA Onat NC. Türkiye İnşaat Sektörünün Global Karbon Ayak izi Analizi. SAUJS. 2018;22:529–547.
MLA Onat, Nuri Cihat. “Türkiye İnşaat Sektörünün Global Karbon Ayak Izi Analizi”. Sakarya University Journal of Science, c. 22, sy. 2, 2018, ss. 529-47, doi:10.16984/saufenbilder.311289.
Vancouver Onat NC. Türkiye İnşaat Sektörünün Global Karbon Ayak izi Analizi. SAUJS. 2018;22(2):529-47.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.