Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure

Yıl 2018, Cilt: 22 Sayı: 5, 1211 - 1220, 01.10.2018
https://doi.org/10.16984/saufenbilder.341709

Öz



This study aims to find out the crucial variations in the mechanical
performance and characterization of Bi-2223 superconducting compounds with the
diffusion annealing temperatures
interval 650 °C-850 °C by means of Vickers hardness measurements
exerted at the different applied
indentation test loads (0.245 N-2.940 N) and derived theoretical findings. All
the experimental measurement results and theoretical evidences declare that the
mechanical characterization and performance are obtained to improve with the
increment in the diffusion annealing temperature up the value of 700 °C as a
consequence of decrement in the grain boundary coupling problems, local
structural distortions, grain misorientations, lattice strains, lattice
defects, disorders and
dislocations in the adjacent layers. Namely, the optimum annealing
temperature of 700 °C resulting in the optimum penetration
of Ni impurities
into both the superconducting grains and over the grain
boundaries develops the crystallinity of Bi-2223
crystal structure. In other words,
the surface energy related to the
crack-initiating omnipresent flaws, void/crack propagation and dislocation
movement reduces due to the augmented critical stress value. In this respect,
the diffusion annealing temperature of 700 °C develops the mechanical durability, stiffness, ideal fracture and flexural strength. However,
after the certain diffusion annealing temperature value of 700 °C, the crystallinity tends to degrade considerably and in
fact dwelling in the worst crystal structure for
850 °C annealing
temperature. Accordingly, the initial
crack growths, sizes of crack-producing flaws, void/crack propagation and
dislocation movement in the
copper-oxide consecutively stacked layers reach much more rapidly to the critical speeds due to the
increased stress amplification so that the Bi-2223 compound with the augmented
brittle behavior breaks at even lower test load.
Moreover, it is observed that the presence of optimum nickel impurities
in the crystal structure strengthens the standard indentation size effect behavior.



Kaynakça

  • H.K. Onnes, Further experiments with Liquid Helium. D. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. V. The Disappearance of the resistance of mercury, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 14 (2011) 113-115
  • V.L. Ginzburg, E.A. Andryushin, Superconductivity, Revised ed. World Scientific Pub. Co. Inc., 2004.
  • S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Joining of Bi-2212 high-T-c superconductors and metals using indium solders, Physica C 463–465 (2007) 464–467.
  • M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor, Physica C 372 (2002) 1657–1663.
  • J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, A resistive fault current limiter based on high temperature superconductors, Appl. Supercond. 3 (1995) 469–482.
  • T.A. Coombs, A finite element model of magnetization of superconducting bulks using a solid-state flux pump, IEEE T. Appl. Supercond. 21 (2011) 3581–3586.
  • F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Superconductor bearings, flywheels and transportation, Supercond. Sci. Technol. 25 (2012) 014007.
  • H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, Recycling failed bulk YBCO superconductors using the NdBCO/YBCO/MgO film-seeded top-seeded melt growth method, J. Appl. Phys. 111 (2012) 103910.
  • K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, High and uniform critical current density for large-size YBa2Cu3O7−δ single crystals, Curr. Appl. Phys. 11 (2011) 1020–1023.
  • W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, 2nd ed., Wiley-VCH Verlag, Weinheim, (2004)
  • G. Yildirim, Determination of Optimum Diffusion Annealing Temperature for Au Surface-layered Bi-2212 Ceramics and Dependence of Transition Temperatures on Disorders, J. Alloy. Compd. 699 (2017) 247–255.
  • B. Batlogg, Cuprate Superconductors: Science beyond High Tc, Solid State Commun. 107 (1998) 639–647.
  • M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, Role of Diffusion-Annealing Time on the Superconducting, Microstructural and Mechanical Properties of Cu-Diffused Bulk MgB2 Superconductor, J. Mater. Sci: Mater. El. 24 (2013) 352–361.
  • H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, Microstructure and Jc improvements in multifilamentary Bi-2212/Ag wires for high field magnet applications, AIP Conference Proceedings 986 (2008) 423–430.
  • K. Koyama, S. Kanno, S. Noguchi, Electrical, Magnetic and superconducting properties of the quenched Bi2Sr2Ca1-XNdXCu2O8+y system, Jpn. J. Appl. Phys. 29 (1990) L53–L56.
  • G. Yildirim, Beginning Point of Metal to Insulator Transition for Bi-2223 Superconducting Matrix Doped with Eu Nanoparticles, J. Alloy. Compd. 578 (2013) 526–535.
  • Y. Zalaoglu, G. Yildirim, H. Buyukuslu, N.K. Saritekin, A. Varilci, C. Terzioglu, O. Gorur, Important Defeats on Pinning of 2D Pancake Vortices in Highly Anisotropic Bi-2212 Superconducting Matrix with Homovalent Bi/La Substitution, J. Alloy. Compd. 631 (2015) 111–119.
  • N.K. Saritekin, H. Bilge, M.F. Kahraman, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, Improvement of Mechanical Characteristics and Performances with Ni Diffusion Mechanism Throughout Bi-2223 Superconducting Matrix, AIP Conference Proceedings 1722 (2016) 140002.
  • N.K. Saritekin, M.F. Kahraman, H. Bilge, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, Effect of Ni Diffusion Annealing Temperature on Crucial Characterization of Bi-2223 Superconducting System, AIP Conference Proceedings, 1722 (2016) 140007.
  • T.P. Sheahen, Introduction to high-temperature superconductivity, 1st ed., Kluwer Academic Publishers, New York, 2002.
  • V.S. Bobrov, Deformation, structure and properties of ceramics and crystals of high-Tc superconductors, Mat. Sci. Eng. A-Struct. 164 (1993) 146–152.
  • Y. Zalaoglu , F. Karaboga, C. Terzioglu, G. Yildirim, Improvement of mechanical performances and characteristics of bulk Bi-2212 materials exposed to Au diffusion and stabilization of durable tetragonal phase by Au, Ceram. Int. 43 (2017) 6836–6844.
  • J. Gong, J. Wu, Z. Guan, Examination of the indentation size effect in low-load Vickers hardness testing of ceramics, J. Eur. Ceram. Soc. 19 (1999) 2625–2631.
  • R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, Charge carrier localization and metal to insulator transition in cerium substituted (Bi,Pb)-2212 superconductor, J. Alloy. Compd. 493 (2010) 11–16.
  • T. Kucukomeroglu, E. Bacaksiz, C. Terzioglu, A. Varilci, Influence of fluorine doping on structural, electrical and optical properties of spray pyrolysis ZnS films, Thin Solid Films 516 (2008) 2913–2916.
  • H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, A new high-Tc oxide superconductor without a rare-earth element, Jpn. J. Appl. Phys. 27 (1988) L209 – L210.
  • G.W. Michel, M. Herviev, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveav, Superconductivity in the Bi-Sr-Cu-O System, Z. Phys. B 68 (1987) 421–423.
  • A. Junod, in: D.M. Ginsberg (Ed.), Physical Properties of High Temperature Superconductors, World Scientific, Singapore, 1990.
  • L. Zhou, P. Zhang, P. Ji, K. Wang, X. Wu, The properties of YBCO superconductors prepared by a new approach-the powder melting process, Supercond. Sci. Technol. 3 (1990) 490–492.
  • S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. Van Dover, G.W. Kammlott, R.A. Fasrnacht, H.D. Keith, High critical currents in Y-Ba-Cu-O superconductors, Appl. Phys. Lett. 52 (1988) 2074–2076.
  • K. Salama, V. Selymanickam, L. Gao, K. Sun, High-current density in bulk YBa2Cu3OX superconductor, Appl. Phys. Lett. 54 (1989) 2352–2354.
  • T. Egi, J.G. Wen, K. Kuroda, H. Unoki, N. Koshizuka, High-current density of Nd(Ba,Nd)2Cu3O7-X single-crystal, Appl. Phys. Lett. 67 (1995) 2406–2408
  • Jr. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction,9th ed., Wiley Binder Version, USA, 2013.
Yıl 2018, Cilt: 22 Sayı: 5, 1211 - 1220, 01.10.2018
https://doi.org/10.16984/saufenbilder.341709

Öz

Kaynakça

  • H.K. Onnes, Further experiments with Liquid Helium. D. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. V. The Disappearance of the resistance of mercury, Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 14 (2011) 113-115
  • V.L. Ginzburg, E.A. Andryushin, Superconductivity, Revised ed. World Scientific Pub. Co. Inc., 2004.
  • S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Joining of Bi-2212 high-T-c superconductors and metals using indium solders, Physica C 463–465 (2007) 464–467.
  • M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor, Physica C 372 (2002) 1657–1663.
  • J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, A resistive fault current limiter based on high temperature superconductors, Appl. Supercond. 3 (1995) 469–482.
  • T.A. Coombs, A finite element model of magnetization of superconducting bulks using a solid-state flux pump, IEEE T. Appl. Supercond. 21 (2011) 3581–3586.
  • F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Superconductor bearings, flywheels and transportation, Supercond. Sci. Technol. 25 (2012) 014007.
  • H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, Recycling failed bulk YBCO superconductors using the NdBCO/YBCO/MgO film-seeded top-seeded melt growth method, J. Appl. Phys. 111 (2012) 103910.
  • K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, High and uniform critical current density for large-size YBa2Cu3O7−δ single crystals, Curr. Appl. Phys. 11 (2011) 1020–1023.
  • W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, 2nd ed., Wiley-VCH Verlag, Weinheim, (2004)
  • G. Yildirim, Determination of Optimum Diffusion Annealing Temperature for Au Surface-layered Bi-2212 Ceramics and Dependence of Transition Temperatures on Disorders, J. Alloy. Compd. 699 (2017) 247–255.
  • B. Batlogg, Cuprate Superconductors: Science beyond High Tc, Solid State Commun. 107 (1998) 639–647.
  • M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, Role of Diffusion-Annealing Time on the Superconducting, Microstructural and Mechanical Properties of Cu-Diffused Bulk MgB2 Superconductor, J. Mater. Sci: Mater. El. 24 (2013) 352–361.
  • H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, Microstructure and Jc improvements in multifilamentary Bi-2212/Ag wires for high field magnet applications, AIP Conference Proceedings 986 (2008) 423–430.
  • K. Koyama, S. Kanno, S. Noguchi, Electrical, Magnetic and superconducting properties of the quenched Bi2Sr2Ca1-XNdXCu2O8+y system, Jpn. J. Appl. Phys. 29 (1990) L53–L56.
  • G. Yildirim, Beginning Point of Metal to Insulator Transition for Bi-2223 Superconducting Matrix Doped with Eu Nanoparticles, J. Alloy. Compd. 578 (2013) 526–535.
  • Y. Zalaoglu, G. Yildirim, H. Buyukuslu, N.K. Saritekin, A. Varilci, C. Terzioglu, O. Gorur, Important Defeats on Pinning of 2D Pancake Vortices in Highly Anisotropic Bi-2212 Superconducting Matrix with Homovalent Bi/La Substitution, J. Alloy. Compd. 631 (2015) 111–119.
  • N.K. Saritekin, H. Bilge, M.F. Kahraman, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, Improvement of Mechanical Characteristics and Performances with Ni Diffusion Mechanism Throughout Bi-2223 Superconducting Matrix, AIP Conference Proceedings 1722 (2016) 140002.
  • N.K. Saritekin, M.F. Kahraman, H. Bilge, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, Effect of Ni Diffusion Annealing Temperature on Crucial Characterization of Bi-2223 Superconducting System, AIP Conference Proceedings, 1722 (2016) 140007.
  • T.P. Sheahen, Introduction to high-temperature superconductivity, 1st ed., Kluwer Academic Publishers, New York, 2002.
  • V.S. Bobrov, Deformation, structure and properties of ceramics and crystals of high-Tc superconductors, Mat. Sci. Eng. A-Struct. 164 (1993) 146–152.
  • Y. Zalaoglu , F. Karaboga, C. Terzioglu, G. Yildirim, Improvement of mechanical performances and characteristics of bulk Bi-2212 materials exposed to Au diffusion and stabilization of durable tetragonal phase by Au, Ceram. Int. 43 (2017) 6836–6844.
  • J. Gong, J. Wu, Z. Guan, Examination of the indentation size effect in low-load Vickers hardness testing of ceramics, J. Eur. Ceram. Soc. 19 (1999) 2625–2631.
  • R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, Charge carrier localization and metal to insulator transition in cerium substituted (Bi,Pb)-2212 superconductor, J. Alloy. Compd. 493 (2010) 11–16.
  • T. Kucukomeroglu, E. Bacaksiz, C. Terzioglu, A. Varilci, Influence of fluorine doping on structural, electrical and optical properties of spray pyrolysis ZnS films, Thin Solid Films 516 (2008) 2913–2916.
  • H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, A new high-Tc oxide superconductor without a rare-earth element, Jpn. J. Appl. Phys. 27 (1988) L209 – L210.
  • G.W. Michel, M. Herviev, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveav, Superconductivity in the Bi-Sr-Cu-O System, Z. Phys. B 68 (1987) 421–423.
  • A. Junod, in: D.M. Ginsberg (Ed.), Physical Properties of High Temperature Superconductors, World Scientific, Singapore, 1990.
  • L. Zhou, P. Zhang, P. Ji, K. Wang, X. Wu, The properties of YBCO superconductors prepared by a new approach-the powder melting process, Supercond. Sci. Technol. 3 (1990) 490–492.
  • S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. Van Dover, G.W. Kammlott, R.A. Fasrnacht, H.D. Keith, High critical currents in Y-Ba-Cu-O superconductors, Appl. Phys. Lett. 52 (1988) 2074–2076.
  • K. Salama, V. Selymanickam, L. Gao, K. Sun, High-current density in bulk YBa2Cu3OX superconductor, Appl. Phys. Lett. 54 (1989) 2352–2354.
  • T. Egi, J.G. Wen, K. Kuroda, H. Unoki, N. Koshizuka, High-current density of Nd(Ba,Nd)2Cu3O7-X single-crystal, Appl. Phys. Lett. 67 (1995) 2406–2408
  • Jr. W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction,9th ed., Wiley Binder Version, USA, 2013.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Tahsin Turgay

Gürcan Yıldırım

Yayımlanma Tarihi 1 Ekim 2018
Gönderilme Tarihi 4 Ekim 2017
Kabul Tarihi 22 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 5

Kaynak Göster

APA Turgay, T., & Yıldırım, G. (2018). Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. Sakarya University Journal of Science, 22(5), 1211-1220. https://doi.org/10.16984/saufenbilder.341709
AMA Turgay T, Yıldırım G. Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. SAUJS. Ekim 2018;22(5):1211-1220. doi:10.16984/saufenbilder.341709
Chicago Turgay, Tahsin, ve Gürcan Yıldırım. “Effect of Diffusion Annealing Temperature on Crack-Initiating Omnipresent Flaws, Void/Crack Propagation and Dislocation Movements Along Ni Surface-Layered Bi-2223 Crystal Structure”. Sakarya University Journal of Science 22, sy. 5 (Ekim 2018): 1211-20. https://doi.org/10.16984/saufenbilder.341709.
EndNote Turgay T, Yıldırım G (01 Ekim 2018) Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. Sakarya University Journal of Science 22 5 1211–1220.
IEEE T. Turgay ve G. Yıldırım, “Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure”, SAUJS, c. 22, sy. 5, ss. 1211–1220, 2018, doi: 10.16984/saufenbilder.341709.
ISNAD Turgay, Tahsin - Yıldırım, Gürcan. “Effect of Diffusion Annealing Temperature on Crack-Initiating Omnipresent Flaws, Void/Crack Propagation and Dislocation Movements Along Ni Surface-Layered Bi-2223 Crystal Structure”. Sakarya University Journal of Science 22/5 (Ekim 2018), 1211-1220. https://doi.org/10.16984/saufenbilder.341709.
JAMA Turgay T, Yıldırım G. Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. SAUJS. 2018;22:1211–1220.
MLA Turgay, Tahsin ve Gürcan Yıldırım. “Effect of Diffusion Annealing Temperature on Crack-Initiating Omnipresent Flaws, Void/Crack Propagation and Dislocation Movements Along Ni Surface-Layered Bi-2223 Crystal Structure”. Sakarya University Journal of Science, c. 22, sy. 5, 2018, ss. 1211-20, doi:10.16984/saufenbilder.341709.
Vancouver Turgay T, Yıldırım G. Effect of Diffusion Annealing Temperature on Crack-initiating Omnipresent Flaws, Void/crack Propagation and Dislocation Movements Along Ni Surface-layered Bi-2223 Crystal Structure. SAUJS. 2018;22(5):1211-20.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.