Yıl 2018,
Cilt: 22 Sayı: 5, 1438 - 1443, 01.10.2018
Nuray Canikoğlu
,
Betül Özdemir
Yıldız Yaralı Özbek
,
Ali Osman Kurt
Kaynakça
- [1] X. Hou, P. Qiu, T. Yang and K.C. Chou, “Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability”, Journal of Alloys and Compounds 615, pp.838–842, 2014.
- [2] A. Chu, M. Qin, X. Jiang, L. Zhang, B. Jia, H. Lu, Y. Chen, X. Qu, “Preparation of TiN nanopowder by carbothermal reduction of a combustion synthesized precursor”, Materials Characterization, 81, pp. 76-84, 2013.
- [3] A.V. Samokhin, D.E. Kirpichev, N.V. Alekseev, M.A. Sinaisky, and Yu. V. Tsvetkov, “Synthesis of Titanium Nitride and Carbonitride Nanopowders in Confined-Jet Flow Plasma Reactor”, Khimiya Vysokikh Energii, 50, pp. 491–497, 2016.
- [4] J.F. Sun, M.Z.Wang, Y.C. Zhao, X.P. Li, B.Y. Liang, “Synthesis of titanium nitride powders by reactive ball milling of titanium and urea”, Journal of Alloys and Compounds, 482, pp. 29–31, 2009.
- [5] R. Aghababazadeh, A. R. Mirhabibi, B. Rand, S. Banijamali,J. Pourasad, M. Ghahari, “Synthesis and characterization of nanocrystalline titaniumnitride powder from rutile and anatase as precursors”, Surface Science, 601, pp. 2881–2885, 2007.
- [6] H. Zhang, F. Li, Q. Jia, “Preparation of titanium nitride ultrafine powders by sol–gel and microwave carbothermal reduction nitridation methods”, Ceramics International, 35, pp.1071–1075, 2009.
- [7] D.P. Xiang, Y. Liu, M.J. Tu, Y.Y. Li, W.P. Chen, “Synthesis of nano Ti(C,N) powder by mechanical activation and subsequent carbothermal reduction–nitridation reaction”, Int. Journal of Refractory Metals & Hard Materials, 27, pp. 111–114, 2009.
- [8] J. Pan, R. Cao, Y. Yuan, “A new approach to the mass production of titanium carbide, nitride and carbonitride whiskers by Spouted Bed Chemical Vapor Deposition”, Materials Letters, 60,pp. 626–629, 2006.
- [9] X. Kan, J. Ding, H. Zhu, C. Deng, C. Yu, “Low temperature synthesis of nanoscale titanium nitride via molten-salt-mediated magnesiothermic reduction”, Powder Technology, 315pp. 81–86, 2017.
- [10] W. Fenga, D. Yan, J. He, G. Zhang, G. Chen, W. Gu, S. Yang, “Microhardness and toughness of the TiN coating prepared by reactive plasma spraying”, Applied Surface Science, 243, pp. 204–213, 2005.
- [11] U. A. Joshi, S. H. Chung, J. S. Lee, “Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios”, Journal of Solid State Chemistry, 178, pp.755–760, 2005.
- [12] Il-seok Kim, P. N. Kumta, “Hydrazide sol/gel process: A novel approach, for synthesizing nanostructured titanium nitride”, Materials Science and Engineering B, 98pp. 123-134, 2003.
- [13] R. Shaviv, “Synthesis of TiN and TiNxCy : optimization of reaction parameters”, Materials Science and Engineering A, 209, pp. 345- 352, 1996.
- [14] R. D. Peelamedu, M. F., D. K. Agrawal and R. Roy, “Preparation of Titanium Nitride: Microwave-Induced Carbothermal Reaction of Titanium Dioxide”, J. Am. Ceram. Soc., 85 (1) pp.117-122, 2002.
- [15] E.B. Türker, A.O. Kurt, “Dinamik Karbotermal İndirgeme–Nitrürleme Yöntemiyle TiN Seramik Tozu Üretimi”, AKÜ FEMÜBİD 14, OZ5789, pp. 565-569, 2014.
Synthesis of Tin Powders Using Dynamic CRN Method
Yıl 2018,
Cilt: 22 Sayı: 5, 1438 - 1443, 01.10.2018
Nuray Canikoğlu
,
Betül Özdemir
Yıldız Yaralı Özbek
,
Ali Osman Kurt
Öz
Dynamic carbotermal reduction-nitridation (DCRN) is a
new approach developed to produce more effective ceramic powder production than
classical static system of carbothermal reduction-nitridation (CRN) method. In
this new technique of DCRN, powder is produced in a moving system and
production takes place at relatively lower temperatures and/or shorter times
than CRN method. This study examines production of TiN powder by the DCRN
method. The granules were prepared using TiO2 and carbon black
powders in the stoichiometric ratio (C/TiO2=2). TiN powders of
sub-micron were
obtained in a graphite reactor from the prepared granules under N2
gas flow. The effects of various test parameters were
investigated for TiN synthesis, such as temperatures of reaction (1350-1450°C),
reaction time (0.5-3 h), N2 gas flow rate (60-120 L/h) and reactor
rotation speed (2-6 rpm). The phases and microstructures of the powders were
characterized by XRD, SEM and FESEM analyses.
Kaynakça
- [1] X. Hou, P. Qiu, T. Yang and K.C. Chou, “Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability”, Journal of Alloys and Compounds 615, pp.838–842, 2014.
- [2] A. Chu, M. Qin, X. Jiang, L. Zhang, B. Jia, H. Lu, Y. Chen, X. Qu, “Preparation of TiN nanopowder by carbothermal reduction of a combustion synthesized precursor”, Materials Characterization, 81, pp. 76-84, 2013.
- [3] A.V. Samokhin, D.E. Kirpichev, N.V. Alekseev, M.A. Sinaisky, and Yu. V. Tsvetkov, “Synthesis of Titanium Nitride and Carbonitride Nanopowders in Confined-Jet Flow Plasma Reactor”, Khimiya Vysokikh Energii, 50, pp. 491–497, 2016.
- [4] J.F. Sun, M.Z.Wang, Y.C. Zhao, X.P. Li, B.Y. Liang, “Synthesis of titanium nitride powders by reactive ball milling of titanium and urea”, Journal of Alloys and Compounds, 482, pp. 29–31, 2009.
- [5] R. Aghababazadeh, A. R. Mirhabibi, B. Rand, S. Banijamali,J. Pourasad, M. Ghahari, “Synthesis and characterization of nanocrystalline titaniumnitride powder from rutile and anatase as precursors”, Surface Science, 601, pp. 2881–2885, 2007.
- [6] H. Zhang, F. Li, Q. Jia, “Preparation of titanium nitride ultrafine powders by sol–gel and microwave carbothermal reduction nitridation methods”, Ceramics International, 35, pp.1071–1075, 2009.
- [7] D.P. Xiang, Y. Liu, M.J. Tu, Y.Y. Li, W.P. Chen, “Synthesis of nano Ti(C,N) powder by mechanical activation and subsequent carbothermal reduction–nitridation reaction”, Int. Journal of Refractory Metals & Hard Materials, 27, pp. 111–114, 2009.
- [8] J. Pan, R. Cao, Y. Yuan, “A new approach to the mass production of titanium carbide, nitride and carbonitride whiskers by Spouted Bed Chemical Vapor Deposition”, Materials Letters, 60,pp. 626–629, 2006.
- [9] X. Kan, J. Ding, H. Zhu, C. Deng, C. Yu, “Low temperature synthesis of nanoscale titanium nitride via molten-salt-mediated magnesiothermic reduction”, Powder Technology, 315pp. 81–86, 2017.
- [10] W. Fenga, D. Yan, J. He, G. Zhang, G. Chen, W. Gu, S. Yang, “Microhardness and toughness of the TiN coating prepared by reactive plasma spraying”, Applied Surface Science, 243, pp. 204–213, 2005.
- [11] U. A. Joshi, S. H. Chung, J. S. Lee, “Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios”, Journal of Solid State Chemistry, 178, pp.755–760, 2005.
- [12] Il-seok Kim, P. N. Kumta, “Hydrazide sol/gel process: A novel approach, for synthesizing nanostructured titanium nitride”, Materials Science and Engineering B, 98pp. 123-134, 2003.
- [13] R. Shaviv, “Synthesis of TiN and TiNxCy : optimization of reaction parameters”, Materials Science and Engineering A, 209, pp. 345- 352, 1996.
- [14] R. D. Peelamedu, M. F., D. K. Agrawal and R. Roy, “Preparation of Titanium Nitride: Microwave-Induced Carbothermal Reaction of Titanium Dioxide”, J. Am. Ceram. Soc., 85 (1) pp.117-122, 2002.
- [15] E.B. Türker, A.O. Kurt, “Dinamik Karbotermal İndirgeme–Nitrürleme Yöntemiyle TiN Seramik Tozu Üretimi”, AKÜ FEMÜBİD 14, OZ5789, pp. 565-569, 2014.