Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 22 Sayı: 5, 1449 - 1457, 01.10.2018
https://doi.org/10.16984/saufenbilder.398331

Öz

Kaynakça

  • R. L. Webb, “Principles of Enhances Heat Transfer, Wiley, New York, 1994.
  • T. Kuppan, “Heat exchanger Design Handbook” Marcell Dekker Inc. New York, 2000.
  • A. C. Benim, H. Chattapadhyay, A. Nahavandi, “Computational Analysis of Turbulent Forced Convection in a Channel with a Triangular Prism”, Int. J. Thermal Sciences, vol. 50, no.10, pp. 1973-1983, 2011.
  • I. Taymaz, E. Aslan, A. C. Benim, “Numerical Investigation of Incompressible Fluid Flow and Heat Transfer across a Bluff Body in a Channel Flow”, Thermal Sicences, vol.19, no.2, pp.537-547, 2015.
  • S. Bhattacharyya, H. Chattopadhyay, A. C. Benim, “Simulation of Heat Transfer Enhancement in Tube Flow with Twisted Tape Insert”, Prog. Compıtational Fluid Dynamics, vol. 17, no.3, pp. 193-197, 2017.
  • H. Chattopadhyay, A. C. Benim, “Turbulent Heat Transfer Over a Moving Surface Due to Impinging Slot Jets”, J. Heat Transfer – Tras. ASME, vol.133, no. 10, Article Number: 104502, 5 pages, 2011.
  • A. C. Benim, “A Finite Element Solution of Radiative Heat Transfer in Participating Media utilizing the Moment Method”, Computer Methods Appl. Mech. Eng., vol. 67, no. 1, pp. 1-14, 1988.
  • E. M. Sparrow, L. M. Hossfeld, Effect of Rounding of Protruding Edges on Heat Transfer and Pressure Drop in a Duct” Int. J. Heat Mass Trans., vol. 27, no. 10, pp. 1715-1723, 1984.
  • B. Snyder, K. T. Li, R. A. Wirtz, “Heat Transfer Enhancement in a Serpentine Channel”, Int. J. Heat Mass Trans., vol. 36, no. 12, pp. 2965-2976, 1993.
  • K. Bilen, M. Cetin, H. Gul, T. Balta, “The Investigation of Groove Geometry Effect on Heat Transfer for Internally Grooved Tubes”, Appl. Themal Eng., vol. 29, no. 4, pp.753-761, 2009.
  • K. Nilpueng, S. Wongwises, “Flow Pattern and Pressure Drop of Vertical upward Gas Liquid Flow in Sinusodial Wavy Channels”, Exp. Thermal Fluid Sci., vol. 15, no. 6, pp.290-306, 2006.
  • M. Ciofalo, J. Stasiek, M. W. Collins, “Flow and Heat Transfer in Corrugated Passages: Direct and Large Eddy Simulation and Compariosn with Experimental Results” In Proc. 2nd Int. Symp. Eng. Turbulence Modelling and Measurements, Florence, Italy, pp.293-292, 1993.
  • M. Mirzaei, A. Sohankar, L. Davidson, F. Innings, “Large Eddy Simulation of the Flow and Heat Transfer in a Half-Corrugated Channel with Various Wave Amplitudes”, Int. J. Heat Mass Trans., vol. 76, pp. 432-446, 2014.
  • S. Ray, B. Unsal, F. Durst, “Development Length of Sinusodially Pulsating Laminer Pipe Flows in Moderate and High Reynolds Number Regimes”, Int. J. Heat Fluid Flow, vol. 37, pp.167-176, 2012.
  • C. Aygun, O. Aydin, “Hydrodynamics of Piston-Driven Laminar Pulsating Flow: Part 1. Developing Flow”, Nucl. Eng. Design, vol. 274, pp. 164-171, 2014
  • C. Aygun, O. Aydin, “Hydrodynamics of Piston-Driven Laminar Pulsating Flow: Part 2. Fully Developed Flow”, Nucl. Eng. Design, vol. 274, pp. 172-180, 2014
  • H. Chattopadhyay, F. Durst, S. Ray, “Analysis of Heat Transfer in Simultaneously Developing Pulsating Laminar Flow in a Pipe with Constant Wall Temperature”, Int. Com. Heat Mass Transfer, vol. 33, no. 4, pp. 475-481, 2006.
  • A. C. Benim, M. Cagan, Gunes, D, “Computational Analysis of Transient Heat Transfer in Turbulent Pipe Flow”, Int. J. Thermal Sciences, vol. 43, no. 8, pp.725-732, 2004.
  • D. A. Nield, A. V. Kuznetsov, “Forced Convection with Laminar Pulsating Flow in a Channel or Tube”, Int. J. Thermal Sciences, vol. 46, pp.551-560, 2007.
  • C. Y. Tseng, K. S. Yang, K. H. Chien, M. Jeng, C. C. Wang, “Investigtion of the Performance of Pulsating Heat Pipe Subject to Uniform/Alternating Tube Diameters”, Exp. Therm. Fluid Sciences, vol. 54, pp.85-92, 2014.
  • B. Metha, S. Khandekar, “Local Experimental Heat Transfer of Single-Phase Pulsating Laminar Flow in a Square Mini-Channel”, Int. J. Thermal Sci., vol. 91, pp.157-166, 2015.
  • J. Y. Yu, W. Lin, X. T. Zheng, “Effect on the Flow and Heat Transfer Characteristics for Sinusodial Pulsating Laminar Flow in a Heated Square Cylinder”, Heat Mass Trans., vol. 50, pp.849-864, 2014.
  • M. Jafari, M. Farhadi, K, Sedighi, “Pulsating Flow effects on Convection Heat Transfer in a Corrugated Channel: A LBM Approcach”, Int. Commun. Heat Mass. Trans., vol. 45, pp.146-154, 2013.
  • F. N. van de Vosse, “Analysis of Carotid Artery Flow” Dissertation in TY Eindhoven, NL, 1987.
  • A. C. Benim, A. Nahavandi, A. Assmann, D. Schubert, P. Feindt, S. Suh. “Simulation of Blood Flow in Human Aorta with Emphasis on Outlet Boundary Conditions” Appl. Math. Modelling, vol. 35, no. 7, pp. 3175-3188, 2011.
  • A. Assmann, A. C. Benim, F. Gül, P. Lux, P. Akhyari, U. Boeken, F. Joos, P. Feindt, A. Lichtenberg, “Pulsatile Extracorporeal Circulation during on-pump Cardia Surgery Enhances Aortic Wall Shear Stress” , J. Biomechanics, vol. 45, no. 1, pp.156-163, 2012.
  • A. C. Benim, F. Gül, A. Assmann, P. Akhayari, A. Licthenberg, F. Joos, “Validation of Loss-Coefficient-Based Outlet Boundary Conditions for Simulating Aortic Flow” J. Mechanics and Medicine Biology, vol. 16, no. 2, Article Number: 1650011, 15 pages, 2016.
  • Ansys-Fluent, Ansys Fluent 14.5 User’s Guide, Canonsburg, PA, 2012.
  • D. C. Wilcox, “Turbulence Modelling for CFD”, DCW Industries, Inc., La Canada, Califormia, 1998
  • F. R. Menter,” Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, vol. 32, no. 8, pp.1598-1605, 1994.
  • F. R. Menter, R. Langtry, S. Volker, “Transition Modelling for General Purpose CFD Codes”, Turbulence Combustion, vol. 77, no. 1, pp.277-303, 2006.
  • P. A. Durbin, B. A. P. Reif, “Statiscal Theory and Modelling for Turbulent Flows” 2nd ed, Wileyi Chichester, 2011.
  • E. Aslan, I. Taymaz, Y. Islamoglu, M. Engin, I. Colpan, G. Karabas, G. Ozcelik, “Computational Investigation of the Velocity and temperature Fields in Corrugated Heat Exchanger Channels Using RANS based Turbulence Models with Experimental Validation”, Prog. Compıtational Fluid Dynamics, vol. 18, no.1, pp. 33-45, 2018.
  • A. C. Benim, K. Ozkan, M. Cagan, D. Gunes, “Computational Investigation of Turbulent Jet Impinging onto Rotating Disk”, Int. J. Numerical Methods Heat Fluid Flow, vol. 17, no. 3, pp.284-301, 2007.
  • P. Oclon, S. Lopata, M. Nowak, A. C. Benim, “Numerical Study on the Effect Inner Tube Fuling on the Therma Performance of High-Temperature Fin-and-tube Heat Echanger” Prog. Compıtational Fluid Dynamics, vol. 15, no.5, pp. 290-306, 2015.

Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions

Yıl 2018, Cilt: 22 Sayı: 5, 1449 - 1457, 01.10.2018
https://doi.org/10.16984/saufenbilder.398331

Öz

Under
pulsatile flow conditions, the characteristics of convective heat transfer and
friction factor for periodic corrugated channel are investigated numerically.
The Finite Volume Method (FVM) is used in the numerical study. Three different
Reynolds Averaged Numerical Simulation (RANS) based turbulence models,
namely the k-ω, the Shear Stress Transport
(SST) and the transition SST model are employed and compared with each other.
The results are also compared with the previous measurements performed for
non-pulsating conditions. Investigations are performed for air flowing through
corrugated channel which has sharp corrugation peak with an inclination angle
of 30° and a 5mm minimum channel height. Reynolds number is varied within the
range 6294 to 7380, while keeping the Prandtl number constant at 0.70. Four
different sinusoidal pulsatile flow conditions, which are combination of two
different frequencies and two different amplitudes, are used. Variations of the
Nusselt number and friction factor with the Reynolds number are studied.
Effects of the amplitude and period of sinusoidal pulsatile flow conditions are
discussed. 

Kaynakça

  • R. L. Webb, “Principles of Enhances Heat Transfer, Wiley, New York, 1994.
  • T. Kuppan, “Heat exchanger Design Handbook” Marcell Dekker Inc. New York, 2000.
  • A. C. Benim, H. Chattapadhyay, A. Nahavandi, “Computational Analysis of Turbulent Forced Convection in a Channel with a Triangular Prism”, Int. J. Thermal Sciences, vol. 50, no.10, pp. 1973-1983, 2011.
  • I. Taymaz, E. Aslan, A. C. Benim, “Numerical Investigation of Incompressible Fluid Flow and Heat Transfer across a Bluff Body in a Channel Flow”, Thermal Sicences, vol.19, no.2, pp.537-547, 2015.
  • S. Bhattacharyya, H. Chattopadhyay, A. C. Benim, “Simulation of Heat Transfer Enhancement in Tube Flow with Twisted Tape Insert”, Prog. Compıtational Fluid Dynamics, vol. 17, no.3, pp. 193-197, 2017.
  • H. Chattopadhyay, A. C. Benim, “Turbulent Heat Transfer Over a Moving Surface Due to Impinging Slot Jets”, J. Heat Transfer – Tras. ASME, vol.133, no. 10, Article Number: 104502, 5 pages, 2011.
  • A. C. Benim, “A Finite Element Solution of Radiative Heat Transfer in Participating Media utilizing the Moment Method”, Computer Methods Appl. Mech. Eng., vol. 67, no. 1, pp. 1-14, 1988.
  • E. M. Sparrow, L. M. Hossfeld, Effect of Rounding of Protruding Edges on Heat Transfer and Pressure Drop in a Duct” Int. J. Heat Mass Trans., vol. 27, no. 10, pp. 1715-1723, 1984.
  • B. Snyder, K. T. Li, R. A. Wirtz, “Heat Transfer Enhancement in a Serpentine Channel”, Int. J. Heat Mass Trans., vol. 36, no. 12, pp. 2965-2976, 1993.
  • K. Bilen, M. Cetin, H. Gul, T. Balta, “The Investigation of Groove Geometry Effect on Heat Transfer for Internally Grooved Tubes”, Appl. Themal Eng., vol. 29, no. 4, pp.753-761, 2009.
  • K. Nilpueng, S. Wongwises, “Flow Pattern and Pressure Drop of Vertical upward Gas Liquid Flow in Sinusodial Wavy Channels”, Exp. Thermal Fluid Sci., vol. 15, no. 6, pp.290-306, 2006.
  • M. Ciofalo, J. Stasiek, M. W. Collins, “Flow and Heat Transfer in Corrugated Passages: Direct and Large Eddy Simulation and Compariosn with Experimental Results” In Proc. 2nd Int. Symp. Eng. Turbulence Modelling and Measurements, Florence, Italy, pp.293-292, 1993.
  • M. Mirzaei, A. Sohankar, L. Davidson, F. Innings, “Large Eddy Simulation of the Flow and Heat Transfer in a Half-Corrugated Channel with Various Wave Amplitudes”, Int. J. Heat Mass Trans., vol. 76, pp. 432-446, 2014.
  • S. Ray, B. Unsal, F. Durst, “Development Length of Sinusodially Pulsating Laminer Pipe Flows in Moderate and High Reynolds Number Regimes”, Int. J. Heat Fluid Flow, vol. 37, pp.167-176, 2012.
  • C. Aygun, O. Aydin, “Hydrodynamics of Piston-Driven Laminar Pulsating Flow: Part 1. Developing Flow”, Nucl. Eng. Design, vol. 274, pp. 164-171, 2014
  • C. Aygun, O. Aydin, “Hydrodynamics of Piston-Driven Laminar Pulsating Flow: Part 2. Fully Developed Flow”, Nucl. Eng. Design, vol. 274, pp. 172-180, 2014
  • H. Chattopadhyay, F. Durst, S. Ray, “Analysis of Heat Transfer in Simultaneously Developing Pulsating Laminar Flow in a Pipe with Constant Wall Temperature”, Int. Com. Heat Mass Transfer, vol. 33, no. 4, pp. 475-481, 2006.
  • A. C. Benim, M. Cagan, Gunes, D, “Computational Analysis of Transient Heat Transfer in Turbulent Pipe Flow”, Int. J. Thermal Sciences, vol. 43, no. 8, pp.725-732, 2004.
  • D. A. Nield, A. V. Kuznetsov, “Forced Convection with Laminar Pulsating Flow in a Channel or Tube”, Int. J. Thermal Sciences, vol. 46, pp.551-560, 2007.
  • C. Y. Tseng, K. S. Yang, K. H. Chien, M. Jeng, C. C. Wang, “Investigtion of the Performance of Pulsating Heat Pipe Subject to Uniform/Alternating Tube Diameters”, Exp. Therm. Fluid Sciences, vol. 54, pp.85-92, 2014.
  • B. Metha, S. Khandekar, “Local Experimental Heat Transfer of Single-Phase Pulsating Laminar Flow in a Square Mini-Channel”, Int. J. Thermal Sci., vol. 91, pp.157-166, 2015.
  • J. Y. Yu, W. Lin, X. T. Zheng, “Effect on the Flow and Heat Transfer Characteristics for Sinusodial Pulsating Laminar Flow in a Heated Square Cylinder”, Heat Mass Trans., vol. 50, pp.849-864, 2014.
  • M. Jafari, M. Farhadi, K, Sedighi, “Pulsating Flow effects on Convection Heat Transfer in a Corrugated Channel: A LBM Approcach”, Int. Commun. Heat Mass. Trans., vol. 45, pp.146-154, 2013.
  • F. N. van de Vosse, “Analysis of Carotid Artery Flow” Dissertation in TY Eindhoven, NL, 1987.
  • A. C. Benim, A. Nahavandi, A. Assmann, D. Schubert, P. Feindt, S. Suh. “Simulation of Blood Flow in Human Aorta with Emphasis on Outlet Boundary Conditions” Appl. Math. Modelling, vol. 35, no. 7, pp. 3175-3188, 2011.
  • A. Assmann, A. C. Benim, F. Gül, P. Lux, P. Akhyari, U. Boeken, F. Joos, P. Feindt, A. Lichtenberg, “Pulsatile Extracorporeal Circulation during on-pump Cardia Surgery Enhances Aortic Wall Shear Stress” , J. Biomechanics, vol. 45, no. 1, pp.156-163, 2012.
  • A. C. Benim, F. Gül, A. Assmann, P. Akhayari, A. Licthenberg, F. Joos, “Validation of Loss-Coefficient-Based Outlet Boundary Conditions for Simulating Aortic Flow” J. Mechanics and Medicine Biology, vol. 16, no. 2, Article Number: 1650011, 15 pages, 2016.
  • Ansys-Fluent, Ansys Fluent 14.5 User’s Guide, Canonsburg, PA, 2012.
  • D. C. Wilcox, “Turbulence Modelling for CFD”, DCW Industries, Inc., La Canada, Califormia, 1998
  • F. R. Menter,” Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, vol. 32, no. 8, pp.1598-1605, 1994.
  • F. R. Menter, R. Langtry, S. Volker, “Transition Modelling for General Purpose CFD Codes”, Turbulence Combustion, vol. 77, no. 1, pp.277-303, 2006.
  • P. A. Durbin, B. A. P. Reif, “Statiscal Theory and Modelling for Turbulent Flows” 2nd ed, Wileyi Chichester, 2011.
  • E. Aslan, I. Taymaz, Y. Islamoglu, M. Engin, I. Colpan, G. Karabas, G. Ozcelik, “Computational Investigation of the Velocity and temperature Fields in Corrugated Heat Exchanger Channels Using RANS based Turbulence Models with Experimental Validation”, Prog. Compıtational Fluid Dynamics, vol. 18, no.1, pp. 33-45, 2018.
  • A. C. Benim, K. Ozkan, M. Cagan, D. Gunes, “Computational Investigation of Turbulent Jet Impinging onto Rotating Disk”, Int. J. Numerical Methods Heat Fluid Flow, vol. 17, no. 3, pp.284-301, 2007.
  • P. Oclon, S. Lopata, M. Nowak, A. C. Benim, “Numerical Study on the Effect Inner Tube Fuling on the Therma Performance of High-Temperature Fin-and-tube Heat Echanger” Prog. Compıtational Fluid Dynamics, vol. 15, no.5, pp. 290-306, 2015.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Erman Aslan 0000-0001-8595-6092

Yayımlanma Tarihi 1 Ekim 2018
Gönderilme Tarihi 24 Şubat 2018
Kabul Tarihi 22 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 5

Kaynak Göster

APA Aslan, E. (2018). Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions. Sakarya University Journal of Science, 22(5), 1449-1457. https://doi.org/10.16984/saufenbilder.398331
AMA Aslan E. Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions. SAUJS. Ekim 2018;22(5):1449-1457. doi:10.16984/saufenbilder.398331
Chicago Aslan, Erman. “Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions”. Sakarya University Journal of Science 22, sy. 5 (Ekim 2018): 1449-57. https://doi.org/10.16984/saufenbilder.398331.
EndNote Aslan E (01 Ekim 2018) Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions. Sakarya University Journal of Science 22 5 1449–1457.
IEEE E. Aslan, “Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions”, SAUJS, c. 22, sy. 5, ss. 1449–1457, 2018, doi: 10.16984/saufenbilder.398331.
ISNAD Aslan, Erman. “Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions”. Sakarya University Journal of Science 22/5 (Ekim 2018), 1449-1457. https://doi.org/10.16984/saufenbilder.398331.
JAMA Aslan E. Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions. SAUJS. 2018;22:1449–1457.
MLA Aslan, Erman. “Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions”. Sakarya University Journal of Science, c. 22, sy. 5, 2018, ss. 1449-57, doi:10.16984/saufenbilder.398331.
Vancouver Aslan E. Numerical Investigation For Convective Heat Transfer and Friction Factor Under Pulsatile Flow Conditions. SAUJS. 2018;22(5):1449-57.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.