Araştırma Makalesi
BibTex RIS Kaynak Göster

Role of boron mineral size on thermal, microstructural and mechanical characteristic of IPP

Yıl 2020, Cilt: 24 Sayı: 1, 205 - 219, 01.02.2020
https://doi.org/10.16984/saufenbilder.629629

Öz

This study paves to way to investigate the fundamental
characteristics including the crystalline melting temperature, percent crystallinity,
crystal structure, unit cell parameters, crystal size, mechanical behaviour,
ultimate strength, Modulus and impact strength in the IPP based composites
formed by blending of IPP with the varying content levels (5, 10, 15, 20 and
30%) of ulexites having different particle sizes (45 and 75µm). The
characterizations of  the prepared IPP
based composites containing ulexite were performed by means of conventional
measurement methods such as Differential Scanning Calorimeter (DSC), X-ray
diffractions and several mechanical tests. The obtained results depicted that
the content and particle size of boron mineral presenting in IPP based
composites had significant effects on the crucial properties of IPP. Namely,
the crystalline melting temperature of IPP increased initially (165.46°C to
168.54°C) when adding 5% of 45µm ulexite into IPP and then, dramatic decrease
was observed with the content increment. The addition of 75µm ulexite into to
IPP matrix led to consistent decreasing of crystalline melting temperatures of
IPP domains. Furthermore, a and b unit cell dimensions of monoclinic
structures initially showed the expansions, but then contracted consistently
with the increasing of ulexite content. The serious decrement in c unit cell
parameter was observed with the increasing of ulexite content for the both
particle sizes.Moreover, the remarkable reinforcements were achieved in the
ultimate strengths, Young's Modulus and impact strength of the IPP based
composites. The maximum improvements in mechanical properties were obtained
with the composites containing 5% of 45µm ulexite and mainly 15% of 75µm
ulexite. These developments presumably were caused from advance in the
alignments and orientations of the IPP chains in the matrix due to presence of
ulexite particles.




Destekleyen Kurum

Bolu Abant Izzet Baysal University

Teşekkür

This work was supported by department of chemistry at Bolu Abant Izzet Baysal University (BAIBU). Furthermore, the authors especially thanks to chemistry department of Middle East Technical University and Innovative Food Technologies Development Application and Research Center (YENIGIDAM) for valuable supports.

Kaynakça

  • [1] J.C. Lynn, "Polymer Composite Characterization for Automotive Structural Applications", J Compos Tech Res, vol. 12(4), pp. 229-231, 1990.
  • [2] S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, "Biomedical applications of polymer-composite materials: a review", Compos Sci Technol,vol. 61(9), pp. 1189-1224, 2001.
  • [3] S. Bhowmik, H.W. Bonin, V.T. Bui, R.D. Weir, "Modification of high-performance polymer composite through high-energy radiation and low-pressure plasma for aerospace and space applications", J Appl Polym Sci, vol. 102(2), pp. 1959-1967, 2006.
  • [4] N.Z. Borba, L. Blaga, J.F. dos Santos, S.T. Amancio-Filho, "Direct-Friction Riveting of polymer composite laminates for aircraft applications", Mater Lett, vol. 215, pp. 31-34, 2018.
  • [5] J.M. Korde, M. Shaikh, B. Kandasubramanian, "Bionic Prototyping of Honeycomb Patterned Polymer Composite and Its Engineering Application", Polym-Plast Technol, vol. 57(17), pp. 1828-1844, 2018.
  • [6] L.O. Afolabi, P.S.M. Megat-Yusoff, Z.M. Ariff, M.S. Hamizol, "Fabrication of pandanus tectorius (screw-pine) natural fiber using vacuum resin infusion for polymer composite application", J Mater Res Technol, vol. 8(3), pp. 3102-3113, 2019.
  • [7] M. Zhang, M.Q. Wang, Z. Yang, J.J. Li, H.W. Qiu, "Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application", J Alloy Compd, vol. 748, pp. 537-545, 2018.
  • [8] K.M. Vighnesha, Shruthi, Sandhya, D.N. Sangeetha, M. Selvakumar, "Synthesis and characterization of activated carbon/conducting polymer composite electrode for supercapacitor applications", J Mater Sci-Mater El, vol. 29(2), pp. 914-921, 2018.
  • [9] L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, "A Review on Natural Fiber Reinforced Polymer Composite and Its Applications", Int J Polym Sci, 2015.
  • [10] L. Bilogurova, M. Shevtsova, "Investigation of the improvement of the physical and mechanical properties of polymer composite materials with nano-sized powders", Materialwiss Werkst, vol 40(4), pp. 331-333, 2009.
  • [11] E. Kuram, "Micro-machinability of injection molded polyamide 6 polymer and glass-fiber reinforced polyamide 6 composite", Compos Part B-Eng, vol. 88, pp. 85-100, 2016.
  • [12] B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, "Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper", Surf Coat Tech,vol. 232, pp. 475-481, 2013.
  • [13] S.Y. Duan, F.H. Mo, X.J. Yang, Y.R. Tao, D.S. Wu, Y. Peng, "Experimental and numerical investigations of strain rate effects on mechanical properties of LGFRP composite", Compos Part B-Eng,vol. 88, pp. 101-107, 2016.
  • [14] X.C. Yin, Y. Li, D. Cheng, Y.H. Feng, G.J. He, "Improvements in thermal conductivity and mechanical properties of HDPE/nano-SiC composites by the synergetic effect of extensional deformation and ISBS", J Appl Polym Sci, vol. 136(24), 2019.
  • [15] C.H. Chen, C.L. Chiang, "Improvement of Flame Retardant Properties of Polyurethane Composites Using Microencapsulation Technology", Polym-Plast Tech Mat, vol. 58(3), pp. 316-327, 2019.
  • [16] I.K. Mehta, S. Kumar, G.S. Chauhan, B.N. Misra, "Grafting onto Isotactic Polypropylene .3. Gamma-Rays Induced Graft-Copolymerization of Water-Soluble Vinyl Monomers", J Appl Polym Sci, vol. 41(5-6), pp. 1171-1180, 1990.
  • [17] G.S.S. Rao, M.S. Choudhary, M.K. Naqvi, K.V. Rao, "Functionalization of isotactic polypropylene with acrylic acid in the melt: Synthesis, characterization and evaluation of thermomechanical properties", Eur Polym J, vol. 32(6), pp. 695-700, 1996.
  • [18] B. Wang, D. Yang, H.R. Zhang, C. Huang, L. Xiong, J. Luo, X.D. Chen, "Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites", Polymers-Basel, vol. 8(4), 2016.
  • [19] E. Guilbert-Garcia, R. Salgado-Delgado, N.A. Rangel-Vazquez, E. Garcia-Hernandez, E. Rubio-Rosas, R. Salgado-Rodriguez, "Modification of Rice Husk to Improve the Interface in Isotactic Polypropylene Composites", Lat Am Appl Res, vol. 42(1), pp. 83-87, 2012.
  • [20] M.F. Mina, S. Seema, R. Matin, M.J. Rahaman, R.B. Sarker, M.A. Gafur, M.A.H. Bhuiyan, "Improved performance of isotactic polypropylene/titanium dioxide composites: Effect of processing conditions and filler content", Polym Degrad Stabil, vol. 94(2), pp. 183-188, 2009.
  • [21] J.M. Park, J.O. Lee, T.W. Park, "Improved interfacial shear strength and durability of single carbon fiber reinforced isotactic polypropylene composites using water-dispersible graft copolymer as a coupling agent", Polym Composite, vol. 17(3), pp. 375-383, 1996.
  • [22] Q.T. Li, G.Q. Zheng, K. Dai, M.C. Xie, C.T. Liu, B.C. Liu, X.L. Zhang, B. Wang, J.B. Chen, C.Y. Shen, Q. Li, X.F. Peng, "beta-transcrystallinity developed from the novel ringed nuclei in the glass fiber/isotactic polypropylene composite", Mater Lett, vol. 65(14), pp. 2274-2277, 2011.
  • [23] S.L. Huang, Z.Y. Liu, S.D. Zheng, M.B. Yang, "Enhancing the conductivity of isotactic polypropylene/polyethylene/carbon black composites by oscillatory shear", Colloid Polym Sci, vol. 291(12) pp. 3005-3011, 2013.
  • [24] D.S. Mi, R.X. La, W.W. Chen, J. Zhang, "Different kinds of transcrystallinity developed from glass fiber/isotactic polypropylene/-nucleation agents composite by microinjection molding", Polym Advan Technol vol. 27(9), pp. 1220-1227, 2016.
  • [25] M.F. Eskibalci, S.G. Ozkan, "An investigation of effect of microwave energy on electrostatic separation of colemanite and ulexite", Miner Eng, vol. 31, pp. 90-97, 2012.
  • [26] G. Guzel, O. Sivrikaya, H. Deveci, "The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties", Compos Part B-Eng, vol. 100, pp.1-9, 2016.
  • [27] P.K. Ojha, S. Karmakar, "Boron for liquid fuel Engines-A review on synthesis, dispersion stability in liquid fuel, and combustion aspects", Prog Aerosp Sci, vol. 100, pp.18-45, 2018.
  • [28] H. Yetis, F. Karaboga, D. Avci, M. Akdogan, I. Belenli, "Role of novel Mg-coating method on transport properties of MgB2/Fe wires", Physica C, vol. 562, pp. 13-19, 2019.
  • [29] D. Kuru, A.A. Borazan, M. Guru, "Effect of chicken feather and boron compounds as filler on mechanical and flame retardancy properties of polymer composite materials", Waste Manage Res, vol. 36(11), pp. 1029-1036, 2018.
  • [30] M. Gecer, E. Baysal, H. Toker, T. Turkoglu, E. Vargun, M. Yuksel, "The Effect of Boron Compounds Impregnation on Physical and Mechanical Properties of Wood Polymer Composites", Wood Res-Slovakia, vol. 60(5), pp. 723-737, 2015.
  • [31] R. Kurt, F. Mengeloglu, H. Meric, "The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites", Eur J Wood Wood Prod, vol. 70(1-3), pp. 177-182, 2012.
  • [32] R. Kurt, F. Mengeloglu, "Utilization of boron compounds as synergists with ammonium polyphosphate for flame retardant wood-polymer composites", Turk J Agric For, vol. 35(2), pp. 155-163, 2011.
  • [33] S. Kutuk, T. Kutuk-Sert, "Effect of PCA on Nanosized Ulexite Material Prepared by Mechanical Milling", Arab J Sci Eng, vol. 42(11), pp. 4801-4809, 2017.
  • [34] A.A. Borazan, D. Gokdai, "Pine Cone and Boron Compounds Effect as Reinforcement on Mechanical and Flammability Properties of Polyester Composites", Open Chem, vol. 16(1), pp. 427-436, 2018.
  • [35] E. Ibibikcan, C. Kaynak, "Usability of three boron compounds for enhancement of flame retardancy in polyethylene-based cable insulation materials", J Fire Sci, vol. 32(2), pp. 99-120, 2014.
  • [36] N. Ayrilmis, T. Akbulut, T. Dundar, R.H. White, F. Mengeloglu, U. Buyuksari, Z. Candan, E. Avci, "Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites", Constr Build Mater, vol. 33, pp. 63-69, 2012.
  • [37] F. Sen, S. Madakbas, E. Basturk, M.V. Kahraman, "Morphology and Mechanical Properties of Thermoplastic Polyurethane/Colemanite Composites", Polym-Korea, vol. 41(6), pp. 1019-1026, 2017.
  • [38] T. Sahin, "Mechanical and Thermal Properties of Colemanite Filled Polypropylene", Kgk-Kaut Gummi Kunst, vol. 64(9), pp.16-21, 2011.
  • [39] H.M. da Costa, V.D. Ramos, M.G. de Oliveira, "Degradation of polypropylene (PP) during multiple extrusions: Thermal analysis, mechanical properties and analysis of variance", Polym Test, vol. 26(5), pp. 676-684, 2007.
  • [40] U. Soykan, S. Cetin, "Reinforcement of high density polyethylene with a side chain LCP by graft copolymerization-thermal, mechanical and morphological properties", J Polym Res, vol. 22(11), 2015.
  • [41] N.L. Severina, Y.S. Yurtseva, M.F. Bukhina, "Contribution of Physical and Chemical Forces of Interaction of a Polymer with a Filler into the Crystallization Process", Vysokomol Soedin B, vol. 25(8), pp. 557-560, 1983.
  • [42] Z. Bartczak, A.S. Argon, R.E. Cohen, M. Weinberg, "Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles", Polymer, vol 40(9) pp. 2347-2365, 1999.
  • [43] S.C. Tjong, "Structural and mechanical properties of polymer nanocomposites", Mat Sci Eng R, vol. 53(3-4) pp. 73-197, 2006.
  • [44] A. Kasgoz, D. Akin, A. Durmus, "Effects of size and shape originated synergism of carbon nano fillers on the electrical and mechanical properties of conductive polymer composites", J Appl Polym Sci, vol. 132(30) 2015.
  • [45] Q. Yang, Y.H. Lin, M. Li, Y. Shen, C.W. Nan, "Characterization of mesoporous silica nanoparticle composites at low filler content", J Compos Mater, vol. 50(6), pp. 715-722, 2016.
  • [46] A.S. Hamizah, M. Mariatti, R. Othman, M. Kawashita, A.R.N. Hayati, "Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers", J Appl Polym Sci, vol. 125, E661-E669, 2012.
Yıl 2020, Cilt: 24 Sayı: 1, 205 - 219, 01.02.2020
https://doi.org/10.16984/saufenbilder.629629

Öz

Kaynakça

  • [1] J.C. Lynn, "Polymer Composite Characterization for Automotive Structural Applications", J Compos Tech Res, vol. 12(4), pp. 229-231, 1990.
  • [2] S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, "Biomedical applications of polymer-composite materials: a review", Compos Sci Technol,vol. 61(9), pp. 1189-1224, 2001.
  • [3] S. Bhowmik, H.W. Bonin, V.T. Bui, R.D. Weir, "Modification of high-performance polymer composite through high-energy radiation and low-pressure plasma for aerospace and space applications", J Appl Polym Sci, vol. 102(2), pp. 1959-1967, 2006.
  • [4] N.Z. Borba, L. Blaga, J.F. dos Santos, S.T. Amancio-Filho, "Direct-Friction Riveting of polymer composite laminates for aircraft applications", Mater Lett, vol. 215, pp. 31-34, 2018.
  • [5] J.M. Korde, M. Shaikh, B. Kandasubramanian, "Bionic Prototyping of Honeycomb Patterned Polymer Composite and Its Engineering Application", Polym-Plast Technol, vol. 57(17), pp. 1828-1844, 2018.
  • [6] L.O. Afolabi, P.S.M. Megat-Yusoff, Z.M. Ariff, M.S. Hamizol, "Fabrication of pandanus tectorius (screw-pine) natural fiber using vacuum resin infusion for polymer composite application", J Mater Res Technol, vol. 8(3), pp. 3102-3113, 2019.
  • [7] M. Zhang, M.Q. Wang, Z. Yang, J.J. Li, H.W. Qiu, "Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application", J Alloy Compd, vol. 748, pp. 537-545, 2018.
  • [8] K.M. Vighnesha, Shruthi, Sandhya, D.N. Sangeetha, M. Selvakumar, "Synthesis and characterization of activated carbon/conducting polymer composite electrode for supercapacitor applications", J Mater Sci-Mater El, vol. 29(2), pp. 914-921, 2018.
  • [9] L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, "A Review on Natural Fiber Reinforced Polymer Composite and Its Applications", Int J Polym Sci, 2015.
  • [10] L. Bilogurova, M. Shevtsova, "Investigation of the improvement of the physical and mechanical properties of polymer composite materials with nano-sized powders", Materialwiss Werkst, vol 40(4), pp. 331-333, 2009.
  • [11] E. Kuram, "Micro-machinability of injection molded polyamide 6 polymer and glass-fiber reinforced polyamide 6 composite", Compos Part B-Eng, vol. 88, pp. 85-100, 2016.
  • [12] B.P. Singh, B.K. Jena, S. Bhattacharjee, L. Besra, "Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper", Surf Coat Tech,vol. 232, pp. 475-481, 2013.
  • [13] S.Y. Duan, F.H. Mo, X.J. Yang, Y.R. Tao, D.S. Wu, Y. Peng, "Experimental and numerical investigations of strain rate effects on mechanical properties of LGFRP composite", Compos Part B-Eng,vol. 88, pp. 101-107, 2016.
  • [14] X.C. Yin, Y. Li, D. Cheng, Y.H. Feng, G.J. He, "Improvements in thermal conductivity and mechanical properties of HDPE/nano-SiC composites by the synergetic effect of extensional deformation and ISBS", J Appl Polym Sci, vol. 136(24), 2019.
  • [15] C.H. Chen, C.L. Chiang, "Improvement of Flame Retardant Properties of Polyurethane Composites Using Microencapsulation Technology", Polym-Plast Tech Mat, vol. 58(3), pp. 316-327, 2019.
  • [16] I.K. Mehta, S. Kumar, G.S. Chauhan, B.N. Misra, "Grafting onto Isotactic Polypropylene .3. Gamma-Rays Induced Graft-Copolymerization of Water-Soluble Vinyl Monomers", J Appl Polym Sci, vol. 41(5-6), pp. 1171-1180, 1990.
  • [17] G.S.S. Rao, M.S. Choudhary, M.K. Naqvi, K.V. Rao, "Functionalization of isotactic polypropylene with acrylic acid in the melt: Synthesis, characterization and evaluation of thermomechanical properties", Eur Polym J, vol. 32(6), pp. 695-700, 1996.
  • [18] B. Wang, D. Yang, H.R. Zhang, C. Huang, L. Xiong, J. Luo, X.D. Chen, "Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites", Polymers-Basel, vol. 8(4), 2016.
  • [19] E. Guilbert-Garcia, R. Salgado-Delgado, N.A. Rangel-Vazquez, E. Garcia-Hernandez, E. Rubio-Rosas, R. Salgado-Rodriguez, "Modification of Rice Husk to Improve the Interface in Isotactic Polypropylene Composites", Lat Am Appl Res, vol. 42(1), pp. 83-87, 2012.
  • [20] M.F. Mina, S. Seema, R. Matin, M.J. Rahaman, R.B. Sarker, M.A. Gafur, M.A.H. Bhuiyan, "Improved performance of isotactic polypropylene/titanium dioxide composites: Effect of processing conditions and filler content", Polym Degrad Stabil, vol. 94(2), pp. 183-188, 2009.
  • [21] J.M. Park, J.O. Lee, T.W. Park, "Improved interfacial shear strength and durability of single carbon fiber reinforced isotactic polypropylene composites using water-dispersible graft copolymer as a coupling agent", Polym Composite, vol. 17(3), pp. 375-383, 1996.
  • [22] Q.T. Li, G.Q. Zheng, K. Dai, M.C. Xie, C.T. Liu, B.C. Liu, X.L. Zhang, B. Wang, J.B. Chen, C.Y. Shen, Q. Li, X.F. Peng, "beta-transcrystallinity developed from the novel ringed nuclei in the glass fiber/isotactic polypropylene composite", Mater Lett, vol. 65(14), pp. 2274-2277, 2011.
  • [23] S.L. Huang, Z.Y. Liu, S.D. Zheng, M.B. Yang, "Enhancing the conductivity of isotactic polypropylene/polyethylene/carbon black composites by oscillatory shear", Colloid Polym Sci, vol. 291(12) pp. 3005-3011, 2013.
  • [24] D.S. Mi, R.X. La, W.W. Chen, J. Zhang, "Different kinds of transcrystallinity developed from glass fiber/isotactic polypropylene/-nucleation agents composite by microinjection molding", Polym Advan Technol vol. 27(9), pp. 1220-1227, 2016.
  • [25] M.F. Eskibalci, S.G. Ozkan, "An investigation of effect of microwave energy on electrostatic separation of colemanite and ulexite", Miner Eng, vol. 31, pp. 90-97, 2012.
  • [26] G. Guzel, O. Sivrikaya, H. Deveci, "The use of colemanite and ulexite as novel fillers in epoxy composites: Influences on thermal and physico-mechanical properties", Compos Part B-Eng, vol. 100, pp.1-9, 2016.
  • [27] P.K. Ojha, S. Karmakar, "Boron for liquid fuel Engines-A review on synthesis, dispersion stability in liquid fuel, and combustion aspects", Prog Aerosp Sci, vol. 100, pp.18-45, 2018.
  • [28] H. Yetis, F. Karaboga, D. Avci, M. Akdogan, I. Belenli, "Role of novel Mg-coating method on transport properties of MgB2/Fe wires", Physica C, vol. 562, pp. 13-19, 2019.
  • [29] D. Kuru, A.A. Borazan, M. Guru, "Effect of chicken feather and boron compounds as filler on mechanical and flame retardancy properties of polymer composite materials", Waste Manage Res, vol. 36(11), pp. 1029-1036, 2018.
  • [30] M. Gecer, E. Baysal, H. Toker, T. Turkoglu, E. Vargun, M. Yuksel, "The Effect of Boron Compounds Impregnation on Physical and Mechanical Properties of Wood Polymer Composites", Wood Res-Slovakia, vol. 60(5), pp. 723-737, 2015.
  • [31] R. Kurt, F. Mengeloglu, H. Meric, "The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites", Eur J Wood Wood Prod, vol. 70(1-3), pp. 177-182, 2012.
  • [32] R. Kurt, F. Mengeloglu, "Utilization of boron compounds as synergists with ammonium polyphosphate for flame retardant wood-polymer composites", Turk J Agric For, vol. 35(2), pp. 155-163, 2011.
  • [33] S. Kutuk, T. Kutuk-Sert, "Effect of PCA on Nanosized Ulexite Material Prepared by Mechanical Milling", Arab J Sci Eng, vol. 42(11), pp. 4801-4809, 2017.
  • [34] A.A. Borazan, D. Gokdai, "Pine Cone and Boron Compounds Effect as Reinforcement on Mechanical and Flammability Properties of Polyester Composites", Open Chem, vol. 16(1), pp. 427-436, 2018.
  • [35] E. Ibibikcan, C. Kaynak, "Usability of three boron compounds for enhancement of flame retardancy in polyethylene-based cable insulation materials", J Fire Sci, vol. 32(2), pp. 99-120, 2014.
  • [36] N. Ayrilmis, T. Akbulut, T. Dundar, R.H. White, F. Mengeloglu, U. Buyuksari, Z. Candan, E. Avci, "Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites", Constr Build Mater, vol. 33, pp. 63-69, 2012.
  • [37] F. Sen, S. Madakbas, E. Basturk, M.V. Kahraman, "Morphology and Mechanical Properties of Thermoplastic Polyurethane/Colemanite Composites", Polym-Korea, vol. 41(6), pp. 1019-1026, 2017.
  • [38] T. Sahin, "Mechanical and Thermal Properties of Colemanite Filled Polypropylene", Kgk-Kaut Gummi Kunst, vol. 64(9), pp.16-21, 2011.
  • [39] H.M. da Costa, V.D. Ramos, M.G. de Oliveira, "Degradation of polypropylene (PP) during multiple extrusions: Thermal analysis, mechanical properties and analysis of variance", Polym Test, vol. 26(5), pp. 676-684, 2007.
  • [40] U. Soykan, S. Cetin, "Reinforcement of high density polyethylene with a side chain LCP by graft copolymerization-thermal, mechanical and morphological properties", J Polym Res, vol. 22(11), 2015.
  • [41] N.L. Severina, Y.S. Yurtseva, M.F. Bukhina, "Contribution of Physical and Chemical Forces of Interaction of a Polymer with a Filler into the Crystallization Process", Vysokomol Soedin B, vol. 25(8), pp. 557-560, 1983.
  • [42] Z. Bartczak, A.S. Argon, R.E. Cohen, M. Weinberg, "Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles", Polymer, vol 40(9) pp. 2347-2365, 1999.
  • [43] S.C. Tjong, "Structural and mechanical properties of polymer nanocomposites", Mat Sci Eng R, vol. 53(3-4) pp. 73-197, 2006.
  • [44] A. Kasgoz, D. Akin, A. Durmus, "Effects of size and shape originated synergism of carbon nano fillers on the electrical and mechanical properties of conductive polymer composites", J Appl Polym Sci, vol. 132(30) 2015.
  • [45] Q. Yang, Y.H. Lin, M. Li, Y. Shen, C.W. Nan, "Characterization of mesoporous silica nanoparticle composites at low filler content", J Compos Mater, vol. 50(6), pp. 715-722, 2016.
  • [46] A.S. Hamizah, M. Mariatti, R. Othman, M. Kawashita, A.R.N. Hayati, "Mechanical and thermal properties of polymethylmethacrylate bone cement composites incorporated with hydroxyapatite and glass-ceramic fillers", J Appl Polym Sci, vol. 125, E661-E669, 2012.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Uğur Soykan 0000-0002-9244-026X

Yayımlanma Tarihi 1 Şubat 2020
Gönderilme Tarihi 5 Ekim 2019
Kabul Tarihi 10 Aralık 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 24 Sayı: 1

Kaynak Göster

APA Soykan, U. (2020). Role of boron mineral size on thermal, microstructural and mechanical characteristic of IPP. Sakarya University Journal of Science, 24(1), 205-219. https://doi.org/10.16984/saufenbilder.629629
AMA Soykan U. Role of boron mineral size on thermal, microstructural and mechanical characteristic of IPP. SAUJS. Şubat 2020;24(1):205-219. doi:10.16984/saufenbilder.629629
Chicago Soykan, Uğur. “Role of Boron Mineral Size on Thermal, Microstructural and Mechanical Characteristic of IPP”. Sakarya University Journal of Science 24, sy. 1 (Şubat 2020): 205-19. https://doi.org/10.16984/saufenbilder.629629.
EndNote Soykan U (01 Şubat 2020) Role of boron mineral size on thermal, microstructural and mechanical characteristic of IPP. Sakarya University Journal of Science 24 1 205–219.
IEEE U. Soykan, “Role of boron mineral size on thermal, microstructural and mechanical characteristic of IPP”, SAUJS, c. 24, sy. 1, ss. 205–219, 2020, doi: 10.16984/saufenbilder.629629.
ISNAD Soykan, Uğur. “Role of Boron Mineral Size on Thermal, Microstructural and Mechanical Characteristic of IPP”. Sakarya University Journal of Science 24/1 (Şubat 2020), 205-219. https://doi.org/10.16984/saufenbilder.629629.
JAMA Soykan U. Role of boron mineral size on thermal, microstructural and mechanical characteristic of IPP. SAUJS. 2020;24:205–219.
MLA Soykan, Uğur. “Role of Boron Mineral Size on Thermal, Microstructural and Mechanical Characteristic of IPP”. Sakarya University Journal of Science, c. 24, sy. 1, 2020, ss. 205-19, doi:10.16984/saufenbilder.629629.
Vancouver Soykan U. Role of boron mineral size on thermal, microstructural and mechanical characteristic of IPP. SAUJS. 2020;24(1):205-19.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.