and ScIr 2," Powder Metallurgy and Metal Ceramics, vol. 39, pp. 55-58, 2000." />
Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2

Yıl 2020, Cilt: 24 Sayı: 2, 406 - 411, 01.04.2020
https://doi.org/10.16984/saufenbilder.680230

Öz

The structural and electronic properties of face-centred cubic ScIr2 compound is investigated by using a generalised gradient approximation scheme of density functional theory with and without spin-orbit interaction. The structural results show that the spin-orbit interaction has a negligible effect for the crystallizing of ScIr2 compound. The Fermi surface calculations suggest considerable nesting along Γ-X direction that could affect the vibrational properties.

Kaynakça

  • [1] E. Deligoz, K. Colakoglu, H. Ozisik, and Y. Cifti, "The first principles investigation of lattice dynamical and thermodynamical properties of Al2Ca and Al2Mg compounds in the cubic Laves structure," Computational materials science, vol. 68, pp. 27-31, 2013.
  • [2] S. Chen, Y. Sun, Y.-H. Duan, B. Huang, and M.-J. Peng, "Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations," Journal of Alloys and Compounds, vol. 630, pp. 202-208, 2015.
  • [3] E. Deligoz, H. Ozisik, and K. Colakoglu, "Theoretical predictions of the structural, mechanical and lattice dynamical properties of XW2 (X= Zr, Hf) Laves phases," Philosophical Magazine, vol. 94, pp. 1379-1392, 2014.
  • [4] M. I. Kholil, M. Z. Rahaman, and M. A. Rahman, "First principles study of the structural, elastic, electronic, optical and thermodynamic properties of SrRh2 laves phase intermetallic compound," Computational Condensed Matter, vol. 13, pp. 65-71, 2017.
  • [5] U. Atzmony, M. Dariel, E. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, "Spin-orientation diagrams and magnetic anisotropy of rare-earth-iron ternary cubic laves compounds," Physical Review B, vol. 7, p. 4220, 1973.
  • [6] U. Atzmony and M. Dariel, "Nonmajor cubic symmetry axes of easy magnetization in rare-earth-iron Laves compounds," Physical Review B, vol. 13, p. 4006, 1976.
  • [7] U. Atzmony, M. Dariel, E. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, "Magnetic Anisotropy and Spin Rotations in Ho x Tb 1− x Fe 2 Cubic Laves Compounds," Physical Review Letters, vol. 28, p. 244, 1972.
  • [8] Ö. Rapp, J. Invarsson, and T. Claeson, "Search for superconductivity in Laves phase compounds," Physics Letters A, vol. 50, pp. 159-160, 1974.
  • [9] H. Tütüncü, H. Uzunok, E. Karaca, E. Arslan, and G. Srivastava, "Effects of spin-orbit coupling on the electron-phonon superconductivity in the cubic Laves-phase compounds CaIr 2 and CaRh 2," Physical Review B, vol. 96, p. 134514, 2017.
  • [10] V. B. Compton and B. T. Matthias, "Laves phase compounds of rare earths and hafnium with noble metals," Acta Crystallographica, vol. 12, pp. 651-654, 1959.
  • [11] T. Geballe, B. Matthias, V. Compton, E. Corenzwit, G. Hull Jr, and L. D. Longinotti, "Superconductivity in binary alloy systems of the rare earths and of thorium with Pt-group metals," Physical Review, vol. 137, p. A119, 1965.
  • [12] L. Goncharuk, V. Sidorko, V. Khoruzhaya, and T. Y. Velikanova, "Thermodynamic parameters of scandium-iridium compounds< ScIr 3> and ScIr 2," Powder Metallurgy and Metal Ceramics, vol. 39, pp. 55-58, 2000.
  • [13] D. Shrivastava and S. Sanyal, "Structural, electronic and elastic properties of REIr 2 (RE= Sc, Y and La) Laves phase compounds under pressure," Indian Journal of Physics, vol. 91, pp. 183-190, 2017.
  • [14] U. K. Chowdhury and T. C. Saha, "An ab-initio Investigation: The Physical Properties of ScIr 2 Superconductor," Physics of the Solid State, vol. 61, pp. 530-536, 2019.
  • [15] F. Murnaghan, "The compressibility of media under extreme pressures," Proceedings of the National Academy of Sciences, vol. 30, pp. 244-247, 1944.
  • [16] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of physics: Condensed matter, vol. 21, p. 395502, 2009.
  • [17] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, et al., "Advanced capabilities for materials modelling with Quantum ESPRESSO," Journal of Physics: Condensed Matter, vol. 29, p. 465901, 2017.
  • [18] R. Stumpf, X. Gonze, and M. Scheffler, A list of separable, norm-conserving, ab-initio pseudopotentials: Fotocopia: Fritz-Haber-Institute, 1990.
  • [19] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, p. 3865, 1996.
  • [20] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical review B, vol. 13, p. 5188, 1976.
Yıl 2020, Cilt: 24 Sayı: 2, 406 - 411, 01.04.2020
https://doi.org/10.16984/saufenbilder.680230

Öz

Kaynakça

  • [1] E. Deligoz, K. Colakoglu, H. Ozisik, and Y. Cifti, "The first principles investigation of lattice dynamical and thermodynamical properties of Al2Ca and Al2Mg compounds in the cubic Laves structure," Computational materials science, vol. 68, pp. 27-31, 2013.
  • [2] S. Chen, Y. Sun, Y.-H. Duan, B. Huang, and M.-J. Peng, "Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations," Journal of Alloys and Compounds, vol. 630, pp. 202-208, 2015.
  • [3] E. Deligoz, H. Ozisik, and K. Colakoglu, "Theoretical predictions of the structural, mechanical and lattice dynamical properties of XW2 (X= Zr, Hf) Laves phases," Philosophical Magazine, vol. 94, pp. 1379-1392, 2014.
  • [4] M. I. Kholil, M. Z. Rahaman, and M. A. Rahman, "First principles study of the structural, elastic, electronic, optical and thermodynamic properties of SrRh2 laves phase intermetallic compound," Computational Condensed Matter, vol. 13, pp. 65-71, 2017.
  • [5] U. Atzmony, M. Dariel, E. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, "Spin-orientation diagrams and magnetic anisotropy of rare-earth-iron ternary cubic laves compounds," Physical Review B, vol. 7, p. 4220, 1973.
  • [6] U. Atzmony and M. Dariel, "Nonmajor cubic symmetry axes of easy magnetization in rare-earth-iron Laves compounds," Physical Review B, vol. 13, p. 4006, 1976.
  • [7] U. Atzmony, M. Dariel, E. Bauminger, D. Lebenbaum, I. Nowik, and S. Ofer, "Magnetic Anisotropy and Spin Rotations in Ho x Tb 1− x Fe 2 Cubic Laves Compounds," Physical Review Letters, vol. 28, p. 244, 1972.
  • [8] Ö. Rapp, J. Invarsson, and T. Claeson, "Search for superconductivity in Laves phase compounds," Physics Letters A, vol. 50, pp. 159-160, 1974.
  • [9] H. Tütüncü, H. Uzunok, E. Karaca, E. Arslan, and G. Srivastava, "Effects of spin-orbit coupling on the electron-phonon superconductivity in the cubic Laves-phase compounds CaIr 2 and CaRh 2," Physical Review B, vol. 96, p. 134514, 2017.
  • [10] V. B. Compton and B. T. Matthias, "Laves phase compounds of rare earths and hafnium with noble metals," Acta Crystallographica, vol. 12, pp. 651-654, 1959.
  • [11] T. Geballe, B. Matthias, V. Compton, E. Corenzwit, G. Hull Jr, and L. D. Longinotti, "Superconductivity in binary alloy systems of the rare earths and of thorium with Pt-group metals," Physical Review, vol. 137, p. A119, 1965.
  • [12] L. Goncharuk, V. Sidorko, V. Khoruzhaya, and T. Y. Velikanova, "Thermodynamic parameters of scandium-iridium compounds< ScIr 3> and ScIr 2," Powder Metallurgy and Metal Ceramics, vol. 39, pp. 55-58, 2000.
  • [13] D. Shrivastava and S. Sanyal, "Structural, electronic and elastic properties of REIr 2 (RE= Sc, Y and La) Laves phase compounds under pressure," Indian Journal of Physics, vol. 91, pp. 183-190, 2017.
  • [14] U. K. Chowdhury and T. C. Saha, "An ab-initio Investigation: The Physical Properties of ScIr 2 Superconductor," Physics of the Solid State, vol. 61, pp. 530-536, 2019.
  • [15] F. Murnaghan, "The compressibility of media under extreme pressures," Proceedings of the National Academy of Sciences, vol. 30, pp. 244-247, 1944.
  • [16] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of physics: Condensed matter, vol. 21, p. 395502, 2009.
  • [17] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, et al., "Advanced capabilities for materials modelling with Quantum ESPRESSO," Journal of Physics: Condensed Matter, vol. 29, p. 465901, 2017.
  • [18] R. Stumpf, X. Gonze, and M. Scheffler, A list of separable, norm-conserving, ab-initio pseudopotentials: Fotocopia: Fritz-Haber-Institute, 1990.
  • [19] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, p. 3865, 1996.
  • [20] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical review B, vol. 13, p. 5188, 1976.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Huseyin Yasin Uzunok 0000-0002-2130-1748

Yayımlanma Tarihi 1 Nisan 2020
Gönderilme Tarihi 26 Ocak 2020
Kabul Tarihi 18 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 24 Sayı: 2

Kaynak Göster

APA Uzunok, H. Y. (2020). The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. Sakarya University Journal of Science, 24(2), 406-411. https://doi.org/10.16984/saufenbilder.680230
AMA Uzunok HY. The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. SAUJS. Nisan 2020;24(2):406-411. doi:10.16984/saufenbilder.680230
Chicago Uzunok, Huseyin Yasin. “The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2”. Sakarya University Journal of Science 24, sy. 2 (Nisan 2020): 406-11. https://doi.org/10.16984/saufenbilder.680230.
EndNote Uzunok HY (01 Nisan 2020) The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. Sakarya University Journal of Science 24 2 406–411.
IEEE H. Y. Uzunok, “The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2”, SAUJS, c. 24, sy. 2, ss. 406–411, 2020, doi: 10.16984/saufenbilder.680230.
ISNAD Uzunok, Huseyin Yasin. “The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2”. Sakarya University Journal of Science 24/2 (Nisan 2020), 406-411. https://doi.org/10.16984/saufenbilder.680230.
JAMA Uzunok HY. The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. SAUJS. 2020;24:406–411.
MLA Uzunok, Huseyin Yasin. “The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2”. Sakarya University Journal of Science, c. 24, sy. 2, 2020, ss. 406-11, doi:10.16984/saufenbilder.680230.
Vancouver Uzunok HY. The Effect of Spin-Orbit Interaction On Structural and Electronic Properties of ScIr2. SAUJS. 2020;24(2):406-11.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.