Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 24 Sayı: 4, 605 - 614, 01.08.2020
https://doi.org/10.16984/saufenbilder.650790

Öz

Kaynakça

  • [1] M. M. Desa et al., "Silicon back contact solar cell configuration: A pathway towards higher efficiency," Renewable and Sustainable Energy Reviews, vol. 60, pp. 1516-1532, 2016.
  • [2] S. Tobbeche and M. N. Kateb, "Simulation and Optimization of Silicon Solar Cell Back Surface Field," Materials Science, vol. 21, no. 4, pp. 491-496, 2015.
  • [3] A. Kaminski et al., "Aluminium BSF in silicon solar cells," Solar Energy Materials and Solar Cells, vol. 72, no. 1-4, pp. 373-379, 2002.
  • [4] M. C. Raval and S. M. Reddy, "Industrial Silicon Solar Cells," in Solar Cells: IntechOpen, 2019.
  • [5] N. Balaji, M. C. Raval, and S. Saravanan, "Review on Metallization in Crystalline Silicon Solar Cells," in Solar Cells: IntechOpen, 2019.
  • [6] H. Yin, K. Tang, J. Zhang, W. Shan, X. Huang, and X. Shen, "Bifacial n-type silicon solar cells with selective front surface field and rear emitter," Solar Energy Materials and Solar Cells, vol. 208, p. 110345, 2020.
  • [7] R. Varache, C. Leendertz, M. Gueunier-Farret, J. Haschke, D. Muñoz, and L. Korte, "Investigation of selective junctions using a newly developed tunnel current model for solar cell applications," Solar Energy Materials and Solar Cells, vol. 141, pp. 14-23, 2015.
  • [8] M. Schmidt et al., "Physical aspects of a-Si: H/c-Si hetero-junction solar cells," Thin Solid Films, vol. 515, no. 19, pp. 7475-7480, 2007.
  • [9] M. H. Vishkasougheh and B. Tunaboylu, "Simulation of high efficiency silicon solar cells with a hetero-junction microcrystalline intrinsic thin layer," Energy conversion and management, vol. 72, pp. 141-146, 2013.
  • [10] N. Dwivedi, S. Kumar, A. Bisht, K. Patel, and S. Sudhakar, "Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve∼ 27% efficiency," Solar energy, vol. 88, pp. 31-41, 2013.
  • [11] T. Lauinger, J. Schmidt, A. G. Aberle, and R. Hezel, "Record low surface recombination velocities on 1 Ω cm p‐silicon using remote plasma silicon nitride passivation," Applied physics letters, vol. 68, no. 9, pp. 1232-1234, 1996.
  • [12] J. G. Fossum, "Physical operation of back-surface-field silicon solar cells," IEEE Transactions on Electron Devices, vol. 24, no. 4, pp. 322-325, 1977.
  • [13] S. Riegel, S. Gloger, B. Raabe, and G. Hahn, "Comparison of the passivation quality of boron and aluminum BSF for wafers of varying thickness," in 24th European Photovoltaic Solar Energy Conference, 2009, pp. 1596-1599.
  • [14] J. Szlufcik, S. Sivoththaman, J. Nlis, R. P. Mertens, and R. Van Overstraeten, "Low-cost industrial technologies of crystalline silicon solar cells," Proceedings of the IEEE, vol. 85, no. 5, pp. 711-730, 1997.
  • [15] L. J. Caballero, "Contact definition in industrial silicon solar cells," Solar Energy, pp. 375-398, 2010.
  • [16] F. Huster, "Aluminum-back surface field: bow investigation and elimination," in 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, pp. 635-638, 2005.
  • [17] J. Murray and A. McAlister, "The Al-Si (aluminum-silicon) system," Bulletin of alloy phase diagrams, vol. 5, no. 1, p. 74, 1984.
  • [18] M. B. Djurdjević, S. Manasijević, Z. Odanović, and N. Dolić, "Calculation of liquidus temperature for aluminum and magnesium alloys applying method of equivalency," Advances in Materials Science and Engineering, vol. 2013, 2013.
  • [19] I. Cesar et al., "Industrial application of uncapped Al 2 O 3 and firing-through Al-BSF in open rear passivated solar cells," in 2011 37th IEEE Photovoltaic Specialists Conference, pp. 001405-001410: IEEE, 2011.
  • [20] J. Eguren, J. Del Alamo, and A. Luque, "Optimisation of p+ doping level of n+-p-p+ bifacial bsf solar cells by ion implantation," Electronics Letters, vol. 16, no. 16, pp. 633-634, 1980.
  • [21] M. Barbes, M. Quintana, L. Verdeja, and R. Gonzalez, "Microstructures of a pressure die cast Al-8.5% Si-3.5% Cu alloy," Kovove Mater, vol. 55, pp. 89-96, 2017.
  • [22] A. Sharma and J. P. Jung, "Possibility of Al-Si Brazing Alloys for Industrial Microjoining Applications," Journal of the Microelectronics and Packaging Society, vol. 24, no. 3, pp. 35-40, 2017.
  • [23] M. Haghshenas and J. Jamali, "Assessment of circumferential cracks in hypereutectic Al-Si clutch housings," Case Studies in Engineering Failure Analysis, vol. 8, 12/01 2016.

Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature depending on the Amount of Printed Aluminum

Yıl 2020, Cilt: 24 Sayı: 4, 605 - 614, 01.08.2020
https://doi.org/10.16984/saufenbilder.650790

Öz

Optimization of the back surface field (BSF) for crystalline silicon solar cells was carried out by Afors-Het simulation software. Thickness and doping concentration parameters were optimized and electrical parameters of solar cells both with BSF and non-BSF were analyzed. The optimum BSF thickness and doping concentration for the crystalline silicon solar cell were determined as 7 µm and 1x1019 cm-3, respectively. A special attention was given to the estimation of peak firing temperature considering the printing amount of aluminum paste in order to form an optimal BSF by the calculations using Al-Si binary phase diagram. It was concluded that the temperature of up to 950oC should be established if an amount of 3 mg/cm2 printed aluminum was used to achieve BSF thickness of 7 µm, where 775 oC would be enough when the amount of aluminum is 8 mg/cm2.

Kaynakça

  • [1] M. M. Desa et al., "Silicon back contact solar cell configuration: A pathway towards higher efficiency," Renewable and Sustainable Energy Reviews, vol. 60, pp. 1516-1532, 2016.
  • [2] S. Tobbeche and M. N. Kateb, "Simulation and Optimization of Silicon Solar Cell Back Surface Field," Materials Science, vol. 21, no. 4, pp. 491-496, 2015.
  • [3] A. Kaminski et al., "Aluminium BSF in silicon solar cells," Solar Energy Materials and Solar Cells, vol. 72, no. 1-4, pp. 373-379, 2002.
  • [4] M. C. Raval and S. M. Reddy, "Industrial Silicon Solar Cells," in Solar Cells: IntechOpen, 2019.
  • [5] N. Balaji, M. C. Raval, and S. Saravanan, "Review on Metallization in Crystalline Silicon Solar Cells," in Solar Cells: IntechOpen, 2019.
  • [6] H. Yin, K. Tang, J. Zhang, W. Shan, X. Huang, and X. Shen, "Bifacial n-type silicon solar cells with selective front surface field and rear emitter," Solar Energy Materials and Solar Cells, vol. 208, p. 110345, 2020.
  • [7] R. Varache, C. Leendertz, M. Gueunier-Farret, J. Haschke, D. Muñoz, and L. Korte, "Investigation of selective junctions using a newly developed tunnel current model for solar cell applications," Solar Energy Materials and Solar Cells, vol. 141, pp. 14-23, 2015.
  • [8] M. Schmidt et al., "Physical aspects of a-Si: H/c-Si hetero-junction solar cells," Thin Solid Films, vol. 515, no. 19, pp. 7475-7480, 2007.
  • [9] M. H. Vishkasougheh and B. Tunaboylu, "Simulation of high efficiency silicon solar cells with a hetero-junction microcrystalline intrinsic thin layer," Energy conversion and management, vol. 72, pp. 141-146, 2013.
  • [10] N. Dwivedi, S. Kumar, A. Bisht, K. Patel, and S. Sudhakar, "Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve∼ 27% efficiency," Solar energy, vol. 88, pp. 31-41, 2013.
  • [11] T. Lauinger, J. Schmidt, A. G. Aberle, and R. Hezel, "Record low surface recombination velocities on 1 Ω cm p‐silicon using remote plasma silicon nitride passivation," Applied physics letters, vol. 68, no. 9, pp. 1232-1234, 1996.
  • [12] J. G. Fossum, "Physical operation of back-surface-field silicon solar cells," IEEE Transactions on Electron Devices, vol. 24, no. 4, pp. 322-325, 1977.
  • [13] S. Riegel, S. Gloger, B. Raabe, and G. Hahn, "Comparison of the passivation quality of boron and aluminum BSF for wafers of varying thickness," in 24th European Photovoltaic Solar Energy Conference, 2009, pp. 1596-1599.
  • [14] J. Szlufcik, S. Sivoththaman, J. Nlis, R. P. Mertens, and R. Van Overstraeten, "Low-cost industrial technologies of crystalline silicon solar cells," Proceedings of the IEEE, vol. 85, no. 5, pp. 711-730, 1997.
  • [15] L. J. Caballero, "Contact definition in industrial silicon solar cells," Solar Energy, pp. 375-398, 2010.
  • [16] F. Huster, "Aluminum-back surface field: bow investigation and elimination," in 20th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, pp. 635-638, 2005.
  • [17] J. Murray and A. McAlister, "The Al-Si (aluminum-silicon) system," Bulletin of alloy phase diagrams, vol. 5, no. 1, p. 74, 1984.
  • [18] M. B. Djurdjević, S. Manasijević, Z. Odanović, and N. Dolić, "Calculation of liquidus temperature for aluminum and magnesium alloys applying method of equivalency," Advances in Materials Science and Engineering, vol. 2013, 2013.
  • [19] I. Cesar et al., "Industrial application of uncapped Al 2 O 3 and firing-through Al-BSF in open rear passivated solar cells," in 2011 37th IEEE Photovoltaic Specialists Conference, pp. 001405-001410: IEEE, 2011.
  • [20] J. Eguren, J. Del Alamo, and A. Luque, "Optimisation of p+ doping level of n+-p-p+ bifacial bsf solar cells by ion implantation," Electronics Letters, vol. 16, no. 16, pp. 633-634, 1980.
  • [21] M. Barbes, M. Quintana, L. Verdeja, and R. Gonzalez, "Microstructures of a pressure die cast Al-8.5% Si-3.5% Cu alloy," Kovove Mater, vol. 55, pp. 89-96, 2017.
  • [22] A. Sharma and J. P. Jung, "Possibility of Al-Si Brazing Alloys for Industrial Microjoining Applications," Journal of the Microelectronics and Packaging Society, vol. 24, no. 3, pp. 35-40, 2017.
  • [23] M. Haghshenas and J. Jamali, "Assessment of circumferential cracks in hypereutectic Al-Si clutch housings," Case Studies in Engineering Failure Analysis, vol. 8, 12/01 2016.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

İmran Kanmaz 0000-0001-8827-1590

Abdullah Üzüm 0000-0001-5324-8892

Yayımlanma Tarihi 1 Ağustos 2020
Gönderilme Tarihi 25 Kasım 2019
Kabul Tarihi 26 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 24 Sayı: 4

Kaynak Göster

APA Kanmaz, İ., & Üzüm, A. (2020). Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature depending on the Amount of Printed Aluminum. Sakarya University Journal of Science, 24(4), 605-614. https://doi.org/10.16984/saufenbilder.650790
AMA Kanmaz İ, Üzüm A. Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature depending on the Amount of Printed Aluminum. SAUJS. Ağustos 2020;24(4):605-614. doi:10.16984/saufenbilder.650790
Chicago Kanmaz, İmran, ve Abdullah Üzüm. “Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature Depending on the Amount of Printed Aluminum”. Sakarya University Journal of Science 24, sy. 4 (Ağustos 2020): 605-14. https://doi.org/10.16984/saufenbilder.650790.
EndNote Kanmaz İ, Üzüm A (01 Ağustos 2020) Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature depending on the Amount of Printed Aluminum. Sakarya University Journal of Science 24 4 605–614.
IEEE İ. Kanmaz ve A. Üzüm, “Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature depending on the Amount of Printed Aluminum”, SAUJS, c. 24, sy. 4, ss. 605–614, 2020, doi: 10.16984/saufenbilder.650790.
ISNAD Kanmaz, İmran - Üzüm, Abdullah. “Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature Depending on the Amount of Printed Aluminum”. Sakarya University Journal of Science 24/4 (Ağustos 2020), 605-614. https://doi.org/10.16984/saufenbilder.650790.
JAMA Kanmaz İ, Üzüm A. Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature depending on the Amount of Printed Aluminum. SAUJS. 2020;24:605–614.
MLA Kanmaz, İmran ve Abdullah Üzüm. “Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature Depending on the Amount of Printed Aluminum”. Sakarya University Journal of Science, c. 24, sy. 4, 2020, ss. 605-14, doi:10.16984/saufenbilder.650790.
Vancouver Kanmaz İ, Üzüm A. Optimization of Back-Surface Field for Crystalline Silicon Solar Cells and Estimating the Firing Temperature depending on the Amount of Printed Aluminum. SAUJS. 2020;24(4):605-14.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.