[1] D. K. Eric,“Nanosystems: molecular machinery, manufacturing, and computation,” New York: John Wiley & Sons, 1992.
[2] P. Hohenberg, and W. Kohn, “Inhomogeneous electron gas,” Physical review, vol. 136, no. 3B, B864, 1964.
[3] W. Kohn, amd L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical review,
vol. 140, no. 4A, A1133, 1965.
[4] P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano letters, vol. 10, no. 5, pp. 1529-1536, 2010.
[5] W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman “Solid C60: a new form of carbon,” Nature, vol. 347, pp. 354 - 358, 1990.
[6] H. W. Kroto, J. R. Heath, S. C. O’Brien and R. E. Smalley, “C60: Buckminster fullerene,” Nature, vol. 318, pp. 162 – 163, 1985.
[7] P. R. Buseck, S. J. Tsipursky amd R. Hettich, “Fullerenes from the geological environment,” Science, vol. 257, no: 5067, pp. 215-217, 1992.
[8] B. J. Lynch, Y. Zhao, D. G. Truhlar, “Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory,’ J. Phys. Chem. A. vol. 107, pp. 1384 – 1388, 2003.
[9] S. Grimme, M. Steinmetz and M. Korth, “How to Compute Isomerization Energies of Organic Molecules with Quantum Chemical Methods,” J. Org. Chem. vol. 72, pp. 2118 – 2126, 2007.
[10] B. C. Thompson, and J. M. Fréchet, “Polymer–fullerene composite solar cells,” Angewandte chemie international edition, vol. 47, no. 1, pp. 58-77, 2008
[11] F. Wudl, “Fullerene materials,” Journal of Materials Chemistry, vol. 12, no. 7, pp. 1959-1963, 2002.
[12] V. Parasuk and J. Almlöf, “C20: the smallest fullerene?,” Chemical physics letters, vol 184, no. 1-3, pp. 187-190, 1991.
[13] A. S. Claye., N. M. Nemes., A. Jánossy and J. E. Fischer, “Structure and electronic properties of potassium-doped single-wall carbon nanotubes,” Phys. Rev. B, vol. 62, pp. 4845-4848, 2000.
[14] T. Miyake amd S. Saito, “Electronic structure of potassium-doped carbon nanotubes,” Phys. Rev. B, vol. 68, Art. no. 155424, 2003.
[15] J.E. Schirber, D. L. Overmyer, H. H. Wang, J. M. Williams, K. D. Carlson, A. M. Kini, U. Welp and W. K. Kwok, “Pressure-dependence of the superconducting transition-temperature of potassium fullerene, KXC60,” Physica C, vol. 178, pp. 137-139, 1991.
[16] M. Kobayashi, Y. Akahama, H. Kawamura, H. Shinohara, H. Sato and Y. Saito, “Structure sequence and possible superconductivity in potassium-doped fullerene C70Kx,” Phys. Rev. B, vol. 48, p. 16877, 1993.
[17] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejon and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter vol. 14, pp. 2745 – 2749, 2002.
[18] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. vol. 77, pp. 3865–3868, 1996.
[19] D. Sankar De, J. A. Flores-Livas, S. Saha, L. Genovese and S. Goedecker, “Stable structures of exohedrally decorated C60-fullerenes,” Carbon, vol. 129, pp. 847-853, 2018.
[20] Y. F. Wang, Y. Li, Z. R. Li, F. Ma, D. Wu and C. C. Sun, “Perfluorinated Exohedral Potassium-Metallofullerene K...C(n)F(n) (n = 20 or 60): Partial Interior and Surface Excess Electron State,” Theor. Chem. Acc. vol. 127, pp. 641–650, 2010.
[21] E. Çalışkan, and S. Göktürk, “Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon,” Separation Science and Technology, vol. 45, no.2, pp. 244-255, 2010.
[22] G. Gereli, Y. Seki, İ. M. Kuşoğlu, and K. Yurdakoç, “Equilibrium and kinetics for the sorption of promethazine hydrochloride onto K10 montmorillonite,” Journal of colloid and interface science, vol. 299, no. 1, pp. 155-162, 2006.
INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE
Year 2021,
Volume: 25 Issue: 1, 135 - 140, 01.02.2021
In this study, based on the Density Functional Theory (DFT), we examined the structural and electronic properties of potassium (K) atoms doped fullerene (C20K).Structural optimization calculations were performed without any symmetry restrictions for the three distinct formations, namely, "pentagon", "bridge" and "on-top", in which K atom can be adsorbed onto C20 fullerene.The "pentagon" structure was obtained as the most stable structure because it has a lower total energy value compared to the other two structures.Adsorption energies were calculated as -1.52 eV in the "pentagon" structure, -1.47 eV in the "bridge" structure and -1.41 eV in the "on-top" structure. According to the computed Eads values, adsorption for all of the three distinct structures is chemisorption. The GapHL value for the “pentagon” structure, which is the most stable structure, was calculated as 0.98 eV and this structure can be considered as a semiconductor material.The results obtained by the adsorption of C20 fullerene with K atom are expected to guide future experimental and theoretical studies.
[1] D. K. Eric,“Nanosystems: molecular machinery, manufacturing, and computation,” New York: John Wiley & Sons, 1992.
[2] P. Hohenberg, and W. Kohn, “Inhomogeneous electron gas,” Physical review, vol. 136, no. 3B, B864, 1964.
[3] W. Kohn, amd L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical review,
vol. 140, no. 4A, A1133, 1965.
[4] P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano letters, vol. 10, no. 5, pp. 1529-1536, 2010.
[5] W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman “Solid C60: a new form of carbon,” Nature, vol. 347, pp. 354 - 358, 1990.
[6] H. W. Kroto, J. R. Heath, S. C. O’Brien and R. E. Smalley, “C60: Buckminster fullerene,” Nature, vol. 318, pp. 162 – 163, 1985.
[7] P. R. Buseck, S. J. Tsipursky amd R. Hettich, “Fullerenes from the geological environment,” Science, vol. 257, no: 5067, pp. 215-217, 1992.
[8] B. J. Lynch, Y. Zhao, D. G. Truhlar, “Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory,’ J. Phys. Chem. A. vol. 107, pp. 1384 – 1388, 2003.
[9] S. Grimme, M. Steinmetz and M. Korth, “How to Compute Isomerization Energies of Organic Molecules with Quantum Chemical Methods,” J. Org. Chem. vol. 72, pp. 2118 – 2126, 2007.
[10] B. C. Thompson, and J. M. Fréchet, “Polymer–fullerene composite solar cells,” Angewandte chemie international edition, vol. 47, no. 1, pp. 58-77, 2008
[11] F. Wudl, “Fullerene materials,” Journal of Materials Chemistry, vol. 12, no. 7, pp. 1959-1963, 2002.
[12] V. Parasuk and J. Almlöf, “C20: the smallest fullerene?,” Chemical physics letters, vol 184, no. 1-3, pp. 187-190, 1991.
[13] A. S. Claye., N. M. Nemes., A. Jánossy and J. E. Fischer, “Structure and electronic properties of potassium-doped single-wall carbon nanotubes,” Phys. Rev. B, vol. 62, pp. 4845-4848, 2000.
[14] T. Miyake amd S. Saito, “Electronic structure of potassium-doped carbon nanotubes,” Phys. Rev. B, vol. 68, Art. no. 155424, 2003.
[15] J.E. Schirber, D. L. Overmyer, H. H. Wang, J. M. Williams, K. D. Carlson, A. M. Kini, U. Welp and W. K. Kwok, “Pressure-dependence of the superconducting transition-temperature of potassium fullerene, KXC60,” Physica C, vol. 178, pp. 137-139, 1991.
[16] M. Kobayashi, Y. Akahama, H. Kawamura, H. Shinohara, H. Sato and Y. Saito, “Structure sequence and possible superconductivity in potassium-doped fullerene C70Kx,” Phys. Rev. B, vol. 48, p. 16877, 1993.
[17] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejon and D. Sánchez-Portal, “The SIESTA method for ab initio order-N materials simulation,” J. Phys. Condens. Matter vol. 14, pp. 2745 – 2749, 2002.
[18] J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. vol. 77, pp. 3865–3868, 1996.
[19] D. Sankar De, J. A. Flores-Livas, S. Saha, L. Genovese and S. Goedecker, “Stable structures of exohedrally decorated C60-fullerenes,” Carbon, vol. 129, pp. 847-853, 2018.
[20] Y. F. Wang, Y. Li, Z. R. Li, F. Ma, D. Wu and C. C. Sun, “Perfluorinated Exohedral Potassium-Metallofullerene K...C(n)F(n) (n = 20 or 60): Partial Interior and Surface Excess Electron State,” Theor. Chem. Acc. vol. 127, pp. 641–650, 2010.
[21] E. Çalışkan, and S. Göktürk, “Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon,” Separation Science and Technology, vol. 45, no.2, pp. 244-255, 2010.
[22] G. Gereli, Y. Seki, İ. M. Kuşoğlu, and K. Yurdakoç, “Equilibrium and kinetics for the sorption of promethazine hydrochloride onto K10 montmorillonite,” Journal of colloid and interface science, vol. 299, no. 1, pp. 155-162, 2006.
Erbaş, M. D., & Demiray, F. (2021). INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE. Sakarya University Journal of Science, 25(1), 135-140.
AMA
Erbaş MD, Demiray F. INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE. SAUJS. February 2021;25(1):135-140.
Chicago
Erbaş, Mehmet Dinçer, and Ferhat Demiray. “INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE”. Sakarya University Journal of Science 25, no. 1 (February 2021): 135-40.
EndNote
Erbaş MD, Demiray F (February 1, 2021) INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE. Sakarya University Journal of Science 25 1 135–140.
IEEE
M. D. Erbaş and F. Demiray, “INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE”, SAUJS, vol. 25, no. 1, pp. 135–140, 2021.
ISNAD
Erbaş, Mehmet Dinçer - Demiray, Ferhat. “INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE”. Sakarya University Journal of Science 25/1 (February 2021), 135-140.
JAMA
Erbaş MD, Demiray F. INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE. SAUJS. 2021;25:135–140.
MLA
Erbaş, Mehmet Dinçer and Ferhat Demiray. “INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE”. Sakarya University Journal of Science, vol. 25, no. 1, 2021, pp. 135-40.
Vancouver
Erbaş MD, Demiray F. INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE. SAUJS. 2021;25(1):135-40.