Araştırma Makalesi
BibTex RIS Kaynak Göster

An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene

Yıl 2021, Cilt: 25 Sayı: 3, 714 - 722, 30.06.2021
https://doi.org/10.16984/saufenbilder.909041

Öz

In this paper, a new efficient method for the synthesis of 2-bromo-3-(bromomethyl)naphthalene is reported. The synthesis is based on (1) preparation of 1,4-dihydronaphthalene via Birch reduction with mild conditions from the reaction of naphthalene, and (2) the reaction between 1,4-dihydronaphthalene and dichlorocarbene generated in situ from chloroform and t-BuOK, and (3) access to the key intermediate 1H-cyclopropa[b]naphthalene from the reaction of 1,1-dichloro-1a,2,7,7a-tetrahydro-1H-cyclopropa[b]naphthalene with t-BuOK, followed by ring-opening of the three-membered cyclopropane by bromination with molecular bromine (Br2). This synthetic sequence allows simple preparation of 2-bromo-3-(bromomethyl)naphthalene in higher yields compared to the two previously reported syntheses. The synthetic approach is modular, low cost, and rapid, and can be utilized to synthesize building blocks of naphthalene derivatives.

Teşekkür

The authors declare no conflict of interest. The author is greatly indebted to Prof. Dr. Arif DAŞTAN for providing use of all of his laboratory facilities throughout conducting the research.

Kaynakça

  • [1] E. T. Akin, M. Erdogan, A. Dastan, and N. Saracoglu, “Access to polysubstituted naphthalenes and anthracenes via a retro-Diels–Alder reaction,” Tetrahedron, vol. 73, no. 37, pp. 5537-5546, 2017.
  • [2] K. Ohta, T. Goto, and Y. Endo, “1, 2-Dicarba-c loso-dodecaboran-1-yl Naphthalene Derivatives,” Inorganic Chemistry, vol. 44, no. 23, pp. 8569-8573, 2005.
  • [3] W. Mahabusarakam, C. Hemtasin, S. Chakthong, S. P. Voravuthikunchai, and I. B. Olawumi, “Naphthoquinones, anthraquinones and naphthalene derivatives from the bulbs of Eleutherine americana,” Planta Medica, vol. 76, no. 04, pp. 345-349, 2010.
  • [4] G. L. Cantrell, and R. Filler, “Synthesis of 1, 2, 3, 4-tetrafluoro-and 1, 2, 3, 4, 5, 6, 7, 8-octafluoroanthracenes via cycloaddition-reversion,” Journal of Fluorine Chemistry, vol. 29, no. 4, pp. 417-424, 1985.
  • [5] A. L. Fernandez, M. Granda, J. Bermejo, and R. Menendez, “Catalytic polymerization of anthracene oil with aluminium trichloride,” Carbon, vol. 37, no. 8, pp. 1247-1255, 1999.
  • [6] N. Saino, T. Kawaji, T. Ito, Y. Matsushita, and S. Okamoto, “Synthesis of substituted anthracenes, pentaphenes and trinaphthylenes via alkyne-cyclotrimerization reaction,” Tetrahedron Letters, vol. 51, no. 9, pp. 1313-1316, 2010.
  • [7] P. T. Lynett, and K. E. Maly, “Synthesis of substituted trinaphthylenes via aryne cyclotrimerization,” Organic Letters, vol. 11, no. 16, pp. 3726-3729, 2009.
  • [8] D. A. Petrone, J. Ye, and M. Lautens, “Modern transition-metal-catalyzed carbon–halogen bond formation,” Chemical Reviews, vol. 116, no. 14, pp. 8003-8104, 2016.
  • [9] D. Hoshino, and K. Mori, “Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/Brønsted acid catalysts,” Organic & Biomolecular Chemistry, vol. 18, no. 34, pp. 6602-6606, 2020.
  • [10] H. Taneda, K. Inamoto, and Y. Kondo, “Palladium-Catalyzed Highly Chemoselective Intramolecular C–H Aminocarbonylation of Phenethylamines to Six-Membered Benzolactams,” Organic Letters, vol. 18, no. 11, pp. 2712-2715, 2016.
  • [11] R. do Carmo Pinheiro, D. F. Back, and G. Zeni, “Iron (III) Chloride/Dialkyl Diselenides‐Promoted Cascade Cyclization of ortho‐Diynyl Benzyl Chalcogenides,” Advanced Synthesis & Catalysis, vol. 361, no. 8, pp. 1866-1873, 2019.
  • [12] R. Dorel, P. R. McGonigal, and A. M. Echavarren, “Hydroacenes made easy by gold (I) catalysis,” Angewandte Chemie, vol. 128, no. 37, pp. 11286-11289, 2016.
  • [13] B. Cui, J. Shan, C. Yuan, W. Han, N. Wan, and Y. Chen, “Synthesis of 2, 3′-spirobi [indolin]-2-ones enabled by a tandem nucleophilic benzylation/C (sp 2)–N cross-coupling reaction sequence,” Organic & Biomolecular Chemistry, vol. 15, no. 28, pp. 5887-5892, 2017.
  • [14] R. A. Pascal Jr, A. Dudnikov, L. A. Love, X. Geng, K. J. Dougherty, J. T. Mague, and N. Byrne, “Chiral Polyaryl Cyclophanes,” European Journal of Organic Chemistry, vol. 28, pp. 4194-4200, 2017.
  • [15] R. Kotani, L. Liu, P. Kumar, H. Kuramochi, T. Tahara, P. Liu, and S. Saito, “Controlling the S1 Energy Profile by Tuning Excited-State Aromaticity,” Journal of the American Chemical Society, vol. 142, no. 35, pp. 14985-14992, 2020.
  • [16] J. G. Smith, P. W. Dibble, and R. E. Sandborn, “The preparation and reactions of naphtho [1, 2-c] furan and naphtho [2, 3-c] furan,” Journal of Organic Chemistry, vol. 51, no. 20, pp. 3762-3768, 1986.
  • [17] L. P. Mangin, and D. Zargarian, “C–H Nickelation of Naphthyl Phosphinites: Electronic and Steric Limitations, Regioselectivity, and Tandem C–P Functionalization,” Organometallics, vol. 38, no. 24, pp. 4687-4700, 2019.
  • [18] W. Zhang, and J. M. Ready, “The Ketene‐Surrogate Coupling: Catalytic Conversion of Aryl Iodides into Aryl Ketenes through Ynol Ethers,” Angewandte Chemie, vol. 126, no. 34, pp. 9126-9130, 2014.
  • [19] S. Kancherla, and K. B. Jørgensen, “Synthesis of Phenacene–Helicene Hybrids by Directed Remote Metalation,” Journal of Organic Chemistry, vol. 85, no. 17, pp. 11140-11153, 2020.
  • [20] S. H. Han, A. K. Pandey, H. Lee, S. Kim, D. Kang, Y. H. Jung, and I. S. Kim, “One-pot synthesis of 2-naphthols from nitrones and MBH adducts via decarboxylative N–O bond cleavage,” Organic Chemistry Frontiers, vol. 5, no. 22, pp. 3210-3218, 2018.
  • [21] E. Ghera, and Y. Ben-David, “Annulation reactions leading to naphthalene derivatives. New syntheses of natural 1, 2-and 1, 4-naphthoquinones,” Journal of Organic Chemistry, vol. 50, no. 18, pp. 3355-3359, 1985.
  • [22] M. G. Rong, T. Z. Qin, X. R. Liu, H. F. Wang, and W. Zi, “De Novo Synthesis of Phenols and Naphthols through Oxidative Cycloaromatization of Dienynes,” Organic Letters, vol. 20, no. 19, pp. 6289-6293, 2018.
  • [23] L. P. Mangin, and D. Zargarian, “C–H Nickelation of Naphthyl Phosphinites: Electronic and Steric Limitations, Regioselectivity, and Tandem C–P Functionalization,” Organometallics, vol. 38, no. 24, pp. 4687-4700, 2019.
  • [24] D. Davalian, P. J. Garratt, W. Koller, M. M. Mansuri, “Strained aromatic systems. Synthesis of cyclopropabenzocyclobutenes, cyclopropanaphthocylobutenes, and related compounds,” Journal of Organic Chemistry, vol. 45, no. 21, pp. 4183-4193, 1980.
  • [25] R. Okazaki, M. Ooka, N. Tokitoh, and N. Inamoto, “Synthesis and reactions of 1, 6-dithiocyanato-and 1, 6-diiodo-1, 3, 5-cycloheptatrienes,” Journal of Organic Chemistry, vol. 50 no. 2, pp. 180-185, 1985.
  • [26] W. E. Billups, and W. A. Rodin, “Regioselective ring opening in annelated benzocyclopropenes,” Journal of Organic Chemistry, vol. 53, no. 6, pp. 1312-1314, 1988.
  • [27] B, Halton, C. S. Jones, A. J. Kay, D. Margetic, and S. Sretenovic, “Studies in the cycloproparene series: chemistry of 1H-cyclopropa [b] naphthalene-3, 6-dione and its transformation into 1 H-cyclopropa [b] anthracene-3, 8-dione 1,” Journal of the Chemical Society, Perkin Transactions, vol. 1 no. 14, pp. 2205-2210, 2000.
  • [28] A. Menzek, A. Altundas, and D. Gueltekin, “A new, safe and convenient procedure for reduction of naphthalene and anthracene: synthesis of tetralin in a one-pot reaction,” Journal of Chemical Research, vol. 2003, no. 11, pp. 752-753, 2003.
  • [29] D. P. Kelly, M. G. Banwell, N. K. Ireland, and A. L. Noel, “Proton-carbon-13 coupling constants in carbocations. 6. Generation and trapping of the (1a. alpha., 7a. alpha.)-1a, 2, 7, 7a-tetrahydro-1H-cyclopropa [b] naphthalen-2-yl cation,” Journal of Organic Chemistry, vol. 56, no. 6, pp. 2040-2045, 1991.
  • [30] W. E. Billups, and W. Y. Chow, “Naphtho [b] cyclopropene,” Journal of the American Chemical Society, vol. 95, no. 12, pp. 4099-4100, 1973.
  • [31] F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo-and naphthoporphyrin complexes,” Inorganic Chemistry, vol. 49, no. 20, pp. 9333-9342, 2010.
Yıl 2021, Cilt: 25 Sayı: 3, 714 - 722, 30.06.2021
https://doi.org/10.16984/saufenbilder.909041

Öz

Kaynakça

  • [1] E. T. Akin, M. Erdogan, A. Dastan, and N. Saracoglu, “Access to polysubstituted naphthalenes and anthracenes via a retro-Diels–Alder reaction,” Tetrahedron, vol. 73, no. 37, pp. 5537-5546, 2017.
  • [2] K. Ohta, T. Goto, and Y. Endo, “1, 2-Dicarba-c loso-dodecaboran-1-yl Naphthalene Derivatives,” Inorganic Chemistry, vol. 44, no. 23, pp. 8569-8573, 2005.
  • [3] W. Mahabusarakam, C. Hemtasin, S. Chakthong, S. P. Voravuthikunchai, and I. B. Olawumi, “Naphthoquinones, anthraquinones and naphthalene derivatives from the bulbs of Eleutherine americana,” Planta Medica, vol. 76, no. 04, pp. 345-349, 2010.
  • [4] G. L. Cantrell, and R. Filler, “Synthesis of 1, 2, 3, 4-tetrafluoro-and 1, 2, 3, 4, 5, 6, 7, 8-octafluoroanthracenes via cycloaddition-reversion,” Journal of Fluorine Chemistry, vol. 29, no. 4, pp. 417-424, 1985.
  • [5] A. L. Fernandez, M. Granda, J. Bermejo, and R. Menendez, “Catalytic polymerization of anthracene oil with aluminium trichloride,” Carbon, vol. 37, no. 8, pp. 1247-1255, 1999.
  • [6] N. Saino, T. Kawaji, T. Ito, Y. Matsushita, and S. Okamoto, “Synthesis of substituted anthracenes, pentaphenes and trinaphthylenes via alkyne-cyclotrimerization reaction,” Tetrahedron Letters, vol. 51, no. 9, pp. 1313-1316, 2010.
  • [7] P. T. Lynett, and K. E. Maly, “Synthesis of substituted trinaphthylenes via aryne cyclotrimerization,” Organic Letters, vol. 11, no. 16, pp. 3726-3729, 2009.
  • [8] D. A. Petrone, J. Ye, and M. Lautens, “Modern transition-metal-catalyzed carbon–halogen bond formation,” Chemical Reviews, vol. 116, no. 14, pp. 8003-8104, 2016.
  • [9] D. Hoshino, and K. Mori, “Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/Brønsted acid catalysts,” Organic & Biomolecular Chemistry, vol. 18, no. 34, pp. 6602-6606, 2020.
  • [10] H. Taneda, K. Inamoto, and Y. Kondo, “Palladium-Catalyzed Highly Chemoselective Intramolecular C–H Aminocarbonylation of Phenethylamines to Six-Membered Benzolactams,” Organic Letters, vol. 18, no. 11, pp. 2712-2715, 2016.
  • [11] R. do Carmo Pinheiro, D. F. Back, and G. Zeni, “Iron (III) Chloride/Dialkyl Diselenides‐Promoted Cascade Cyclization of ortho‐Diynyl Benzyl Chalcogenides,” Advanced Synthesis & Catalysis, vol. 361, no. 8, pp. 1866-1873, 2019.
  • [12] R. Dorel, P. R. McGonigal, and A. M. Echavarren, “Hydroacenes made easy by gold (I) catalysis,” Angewandte Chemie, vol. 128, no. 37, pp. 11286-11289, 2016.
  • [13] B. Cui, J. Shan, C. Yuan, W. Han, N. Wan, and Y. Chen, “Synthesis of 2, 3′-spirobi [indolin]-2-ones enabled by a tandem nucleophilic benzylation/C (sp 2)–N cross-coupling reaction sequence,” Organic & Biomolecular Chemistry, vol. 15, no. 28, pp. 5887-5892, 2017.
  • [14] R. A. Pascal Jr, A. Dudnikov, L. A. Love, X. Geng, K. J. Dougherty, J. T. Mague, and N. Byrne, “Chiral Polyaryl Cyclophanes,” European Journal of Organic Chemistry, vol. 28, pp. 4194-4200, 2017.
  • [15] R. Kotani, L. Liu, P. Kumar, H. Kuramochi, T. Tahara, P. Liu, and S. Saito, “Controlling the S1 Energy Profile by Tuning Excited-State Aromaticity,” Journal of the American Chemical Society, vol. 142, no. 35, pp. 14985-14992, 2020.
  • [16] J. G. Smith, P. W. Dibble, and R. E. Sandborn, “The preparation and reactions of naphtho [1, 2-c] furan and naphtho [2, 3-c] furan,” Journal of Organic Chemistry, vol. 51, no. 20, pp. 3762-3768, 1986.
  • [17] L. P. Mangin, and D. Zargarian, “C–H Nickelation of Naphthyl Phosphinites: Electronic and Steric Limitations, Regioselectivity, and Tandem C–P Functionalization,” Organometallics, vol. 38, no. 24, pp. 4687-4700, 2019.
  • [18] W. Zhang, and J. M. Ready, “The Ketene‐Surrogate Coupling: Catalytic Conversion of Aryl Iodides into Aryl Ketenes through Ynol Ethers,” Angewandte Chemie, vol. 126, no. 34, pp. 9126-9130, 2014.
  • [19] S. Kancherla, and K. B. Jørgensen, “Synthesis of Phenacene–Helicene Hybrids by Directed Remote Metalation,” Journal of Organic Chemistry, vol. 85, no. 17, pp. 11140-11153, 2020.
  • [20] S. H. Han, A. K. Pandey, H. Lee, S. Kim, D. Kang, Y. H. Jung, and I. S. Kim, “One-pot synthesis of 2-naphthols from nitrones and MBH adducts via decarboxylative N–O bond cleavage,” Organic Chemistry Frontiers, vol. 5, no. 22, pp. 3210-3218, 2018.
  • [21] E. Ghera, and Y. Ben-David, “Annulation reactions leading to naphthalene derivatives. New syntheses of natural 1, 2-and 1, 4-naphthoquinones,” Journal of Organic Chemistry, vol. 50, no. 18, pp. 3355-3359, 1985.
  • [22] M. G. Rong, T. Z. Qin, X. R. Liu, H. F. Wang, and W. Zi, “De Novo Synthesis of Phenols and Naphthols through Oxidative Cycloaromatization of Dienynes,” Organic Letters, vol. 20, no. 19, pp. 6289-6293, 2018.
  • [23] L. P. Mangin, and D. Zargarian, “C–H Nickelation of Naphthyl Phosphinites: Electronic and Steric Limitations, Regioselectivity, and Tandem C–P Functionalization,” Organometallics, vol. 38, no. 24, pp. 4687-4700, 2019.
  • [24] D. Davalian, P. J. Garratt, W. Koller, M. M. Mansuri, “Strained aromatic systems. Synthesis of cyclopropabenzocyclobutenes, cyclopropanaphthocylobutenes, and related compounds,” Journal of Organic Chemistry, vol. 45, no. 21, pp. 4183-4193, 1980.
  • [25] R. Okazaki, M. Ooka, N. Tokitoh, and N. Inamoto, “Synthesis and reactions of 1, 6-dithiocyanato-and 1, 6-diiodo-1, 3, 5-cycloheptatrienes,” Journal of Organic Chemistry, vol. 50 no. 2, pp. 180-185, 1985.
  • [26] W. E. Billups, and W. A. Rodin, “Regioselective ring opening in annelated benzocyclopropenes,” Journal of Organic Chemistry, vol. 53, no. 6, pp. 1312-1314, 1988.
  • [27] B, Halton, C. S. Jones, A. J. Kay, D. Margetic, and S. Sretenovic, “Studies in the cycloproparene series: chemistry of 1H-cyclopropa [b] naphthalene-3, 6-dione and its transformation into 1 H-cyclopropa [b] anthracene-3, 8-dione 1,” Journal of the Chemical Society, Perkin Transactions, vol. 1 no. 14, pp. 2205-2210, 2000.
  • [28] A. Menzek, A. Altundas, and D. Gueltekin, “A new, safe and convenient procedure for reduction of naphthalene and anthracene: synthesis of tetralin in a one-pot reaction,” Journal of Chemical Research, vol. 2003, no. 11, pp. 752-753, 2003.
  • [29] D. P. Kelly, M. G. Banwell, N. K. Ireland, and A. L. Noel, “Proton-carbon-13 coupling constants in carbocations. 6. Generation and trapping of the (1a. alpha., 7a. alpha.)-1a, 2, 7, 7a-tetrahydro-1H-cyclopropa [b] naphthalen-2-yl cation,” Journal of Organic Chemistry, vol. 56, no. 6, pp. 2040-2045, 1991.
  • [30] W. E. Billups, and W. Y. Chow, “Naphtho [b] cyclopropene,” Journal of the American Chemical Society, vol. 95, no. 12, pp. 4099-4100, 1973.
  • [31] F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo-and naphthoporphyrin complexes,” Inorganic Chemistry, vol. 49, no. 20, pp. 9333-9342, 2010.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Musa Erdoğan 0000-0001-6097-2862

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 3 Nisan 2021
Kabul Tarihi 19 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 3

Kaynak Göster

APA Erdoğan, M. (2021). An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. Sakarya University Journal of Science, 25(3), 714-722. https://doi.org/10.16984/saufenbilder.909041
AMA Erdoğan M. An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. SAUJS. Haziran 2021;25(3):714-722. doi:10.16984/saufenbilder.909041
Chicago Erdoğan, Musa. “An Efficient Synthetic Approach for the Transition Metal-Free Preparation of 2-Bromo-3-(bromomethyl)naphthalene from Naphthalene”. Sakarya University Journal of Science 25, sy. 3 (Haziran 2021): 714-22. https://doi.org/10.16984/saufenbilder.909041.
EndNote Erdoğan M (01 Haziran 2021) An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. Sakarya University Journal of Science 25 3 714–722.
IEEE M. Erdoğan, “An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene”, SAUJS, c. 25, sy. 3, ss. 714–722, 2021, doi: 10.16984/saufenbilder.909041.
ISNAD Erdoğan, Musa. “An Efficient Synthetic Approach for the Transition Metal-Free Preparation of 2-Bromo-3-(bromomethyl)naphthalene from Naphthalene”. Sakarya University Journal of Science 25/3 (Haziran 2021), 714-722. https://doi.org/10.16984/saufenbilder.909041.
JAMA Erdoğan M. An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. SAUJS. 2021;25:714–722.
MLA Erdoğan, Musa. “An Efficient Synthetic Approach for the Transition Metal-Free Preparation of 2-Bromo-3-(bromomethyl)naphthalene from Naphthalene”. Sakarya University Journal of Science, c. 25, sy. 3, 2021, ss. 714-22, doi:10.16984/saufenbilder.909041.
Vancouver Erdoğan M. An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. SAUJS. 2021;25(3):714-22.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.