Araştırma Makalesi
BibTex RIS Kaynak Göster

Carbon Nanofibers Fabricated from Electrospun Nano-sized boron oxide/Polyacrylonitrile Nanofibers as electrode for Supercapacitors

Yıl 2021, Cilt: 25 Sayı: 5, 1180 - 1188, 30.10.2021
https://doi.org/10.16984/saufenbilder.877089

Öz

Porous carbon nanofiber (CNF) composites are promising electrode materials for supercapacitor (SC) applications. In this research, for the purpose of developing efficient CNFs with high specific capacitance, PAN solutions introduced with nano-sized boron oxide (B2O3) were electrospun followed by thermal treatment at high temperature. The best electrochemical performance was found for the sample which was doped 1 wt% nano-sized boron oxide and a gradual decrease was seen when the content was increased from 1 to 5 wt%. 1BCNF electrodes prepared from 1 wt% nano-sized boron oxide with PAN show a remarkable specific capacitance of 146 Fg-1 at 1Ag-1 compared to the pure CNF which is 46 Fg-1. Also, 1BCNF composite has an excellent cycle life which is more than 90 % capacity retention after 6500 cycles. The results showed that 1BCNF composite is a promising potential electrode for supercapacitor applications due to the optimized pore structure and enhanced electrical conductivity.

Destekleyen Kurum

This study is supported by Scientific and Technical Research Council of Turkey-International Industrial R&D (TEYDEB-1509 and ERANET-INCOMERA unit.

Proje Numarası

Project No: 9160035

Kaynakça

  • [1]X. Liu et al., “Flexible all-fiber electrospun supercapacitor,” Journal of Power Sources, vol. 384, pp. 264–269, 2018.
  • [2] H. Wang et al., “High Performance Supercapacitor Electrode Materials from Electrospun Carbon Nanofibers in Situ Activated by High Decomposition Temperature Polymer,” American Chemical Society Applied Energy Materials, vol. 1, no. 2, pp. 431–439, 2018.
  • [3] E. Lee, T. Lee, and B.-S. Kim, “Electrospun nanofiber of hybrid manganese oxides for supercapacitor: Relevance to mixed inorganic interfaces,” Journal of Power Sources, vol. 255, pp. 335–340, 2014.
  • [4] F. N. Tuzluca, Y. O. Yesilbag, and M. Ertugrul, “Synthesis of ultra-long boron nanowires as supercapacitor electrode material,” Applied Surface Science, vol. 493, pp. 787–794, 2019.
  • [5] Z. Çıplak, N. Yıldız, “The effect of Ag loading on supercapacitor performance of graphene based nanocomposites” Fullerenes, Nanotubes Carbon Nanostructures vol. 27, no. 1, pp. 65-76, 2019.
  • [6] J. Liang et al., “Recent advances in electrospun nanofibers for supercapacitors,” Journal of Materials Chemistry A, vol. 8, pp. 16747-16789 2020.
  • [7] Y. Li, H. Xie, J. Li, Y. Bando, Y. Yamauchi, and J. Henzie, “High performance nanoporous carbon microsupercapacitors generated by a solvent-free MOF-CVD method,” Carbon N. Y., vol. 152, pp. 688–696, 2019.
  • [8] C.Tran, V.Kalra, “Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors” Journal of Power Sources, vol. 235, pp. 289-296, 2013.
  • [9] K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Scientific Reports, vol. 7, pp. 2–9, 2017.
  • [10] V. Thirumal, A. Pandurangan, R. Jayavel, and R. Ilangovan, “Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications,” Synthetic Metals, vol. 220, pp. 524–532, 2016.
  • [11] G. Wang, Y. Ling, F. Qian, X. Yang, X.-X. Liu, and Y. Li, “Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes,” Journal of Power Sources, vol. 196, no. 11, pp. 5209–5214, 2011.
  • [12] U. Kurtan, U. Sahinturk, H. Aydın, D. Dursun, and A. Baykal, “CoFe Nanoparticles in Carbon Nanofibers as an Electrode for Ultra-Stable Supercapacitor,” Journal Inorganic and Organometallic Polymeric Materials, vol. 30, pp. 3608-3616, 2020.
  • [13] J. Lu et al., “Super flexible electrospun carbon/nickel nanofibrous film electrode for supercapacitors,” Journal of Alloys and Compounds, vol. 774, pp. 593–600, 2019.
  • [14] U. Kurtan, H.Aydın, B Büyük, U Şahintürk, MA Almessiere, A Baykal, “Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode,” Journal of Energy Storage, vol. 32, p. 101671, 2020.
  • [15] S. H. Kim and B. H. Kim, “Influence of boron content on the structure and capacitive properties of electrospun polyacrylonitrile/pitch-based carbon nanofiber composites,” Synthetic Metals, vol. 242, pp. 1–7, 2018.
  • [16] B. S. Mao, Z. Wen, Z. Bo, J. Chang, X. Huang, and J. Chen, “Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors,” ACS Applied Materials and Interfaces, vol. 6, no. 12, pp. 9881–9889, 2014.
  • [17] L. Qie, W,Chen, H.Xu, X.Xiong, Y.Jiang, F.Zou, X.Hu, Y.Xin, Z.Zhang andY. Huang, “Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors,” Energy and Environmental Science, vol. 6, no. 8, pp. 2497–2504, 2013.
  • [18] H.Wang, W.Wang, H. Wang, X. Jin, H.Niu, H.Wang, H.Zhou and T.Lin, “High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer,” ACS Applied Energy and Materials, vol. 1, no. 2, pp. 431–439, 2018.
  • [19] J. Deng, C. He, Y. Peng, J.Wang, X. Long, P.Li, A.Chan, “Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure,” Synthetic Metals, vol. 139, no. 2, pp. 295–301, 2003.
  • [20] T. Lavanya and S. Ramaprabhu, “Copper nanoparticles incorporated porous carbon nanofibers as a freestanding binder-free electrode for symmetric supercapacitor with enhanced electrochemical performance,” Materials Research Express, vol. 6, no. 10, p. 105005, 2019.
  • [21] B. H. Kim and K. S. Yang, “Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide,” Electrochimica Acta, vol. 88, pp. 597–603, 2013.
  • [22] İ. Yılmaz, A. Gelir, O. Yargi, U. Sahinturk, and O. K. Ozdemir, “Electrodeposition of zinc and reduced graphene oxide on porous nickel electrodes for high performance supercapacitors,” Journal of Physical Chemistry and Solids, vol. 138, p. 109307, 2020.
  • [23] J. Ge, G.Fan, Y. Si, J. He, H. Kim, B.Ding, S. Al-Deyab, M. El-Newehy, and J. Yu, “Elastic and hierarchical porous carbon nanofibrous membranes incorporated with NiFe2O4 nanocrystals for highly efficient capacitive energy storage,” Nanoscale, vol. 8, no. 4, pp. 2195–2204, 2016.
  • [24] Z.-Y. Yu, L.-F. Chen, L.-T. Song, Y.-W. Zhu, H.-X. Ji, and S.-H. Yu, “Free-standing boron and oxygen co-doped carbon nanofiber films for large volumetric capacitance and high rate capability supercapacitors,” Nano Energy, vol. 15, pp. 235–243, 2015.
  • [25] J. Kim, Y. J. Heo, J. Y. Hong, and S. K. Kim, “Preparation of porous carbon nanofibers with tailored porosity for electrochemical capacitor electrodes,” Materials, vol. 13, no. 13, p. 729, 2020.
  • [26] Y. Yao, P. Liu, S. Zeng, T. Lan, H. Huang, X. Zeng and J. Zou, “Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors,” Dalton Transactions, vol. 47, no. 21, pp. 7316–7326, 2018.
  • [27] X. Tian, N, Zhao, Y. Song, K. Wang, D. Xu, X. Li Q. Guo and L. Liu, “Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution,” Electrochimica Acta, vol. 185, pp. 40–51, 2015.
  • [28] Q. Xu, X. Yu, Q. Liang, Y. Bai, Z. H. Huang, and F. Kang, “Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes,” Journal of Electroanalytical and Chemistry, vol. 739, pp. 84–8.8, 2015.
Yıl 2021, Cilt: 25 Sayı: 5, 1180 - 1188, 30.10.2021
https://doi.org/10.16984/saufenbilder.877089

Öz

Proje Numarası

Project No: 9160035

Kaynakça

  • [1]X. Liu et al., “Flexible all-fiber electrospun supercapacitor,” Journal of Power Sources, vol. 384, pp. 264–269, 2018.
  • [2] H. Wang et al., “High Performance Supercapacitor Electrode Materials from Electrospun Carbon Nanofibers in Situ Activated by High Decomposition Temperature Polymer,” American Chemical Society Applied Energy Materials, vol. 1, no. 2, pp. 431–439, 2018.
  • [3] E. Lee, T. Lee, and B.-S. Kim, “Electrospun nanofiber of hybrid manganese oxides for supercapacitor: Relevance to mixed inorganic interfaces,” Journal of Power Sources, vol. 255, pp. 335–340, 2014.
  • [4] F. N. Tuzluca, Y. O. Yesilbag, and M. Ertugrul, “Synthesis of ultra-long boron nanowires as supercapacitor electrode material,” Applied Surface Science, vol. 493, pp. 787–794, 2019.
  • [5] Z. Çıplak, N. Yıldız, “The effect of Ag loading on supercapacitor performance of graphene based nanocomposites” Fullerenes, Nanotubes Carbon Nanostructures vol. 27, no. 1, pp. 65-76, 2019.
  • [6] J. Liang et al., “Recent advances in electrospun nanofibers for supercapacitors,” Journal of Materials Chemistry A, vol. 8, pp. 16747-16789 2020.
  • [7] Y. Li, H. Xie, J. Li, Y. Bando, Y. Yamauchi, and J. Henzie, “High performance nanoporous carbon microsupercapacitors generated by a solvent-free MOF-CVD method,” Carbon N. Y., vol. 152, pp. 688–696, 2019.
  • [8] C.Tran, V.Kalra, “Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors” Journal of Power Sources, vol. 235, pp. 289-296, 2013.
  • [9] K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Scientific Reports, vol. 7, pp. 2–9, 2017.
  • [10] V. Thirumal, A. Pandurangan, R. Jayavel, and R. Ilangovan, “Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications,” Synthetic Metals, vol. 220, pp. 524–532, 2016.
  • [11] G. Wang, Y. Ling, F. Qian, X. Yang, X.-X. Liu, and Y. Li, “Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes,” Journal of Power Sources, vol. 196, no. 11, pp. 5209–5214, 2011.
  • [12] U. Kurtan, U. Sahinturk, H. Aydın, D. Dursun, and A. Baykal, “CoFe Nanoparticles in Carbon Nanofibers as an Electrode for Ultra-Stable Supercapacitor,” Journal Inorganic and Organometallic Polymeric Materials, vol. 30, pp. 3608-3616, 2020.
  • [13] J. Lu et al., “Super flexible electrospun carbon/nickel nanofibrous film electrode for supercapacitors,” Journal of Alloys and Compounds, vol. 774, pp. 593–600, 2019.
  • [14] U. Kurtan, H.Aydın, B Büyük, U Şahintürk, MA Almessiere, A Baykal, “Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode,” Journal of Energy Storage, vol. 32, p. 101671, 2020.
  • [15] S. H. Kim and B. H. Kim, “Influence of boron content on the structure and capacitive properties of electrospun polyacrylonitrile/pitch-based carbon nanofiber composites,” Synthetic Metals, vol. 242, pp. 1–7, 2018.
  • [16] B. S. Mao, Z. Wen, Z. Bo, J. Chang, X. Huang, and J. Chen, “Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors,” ACS Applied Materials and Interfaces, vol. 6, no. 12, pp. 9881–9889, 2014.
  • [17] L. Qie, W,Chen, H.Xu, X.Xiong, Y.Jiang, F.Zou, X.Hu, Y.Xin, Z.Zhang andY. Huang, “Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors,” Energy and Environmental Science, vol. 6, no. 8, pp. 2497–2504, 2013.
  • [18] H.Wang, W.Wang, H. Wang, X. Jin, H.Niu, H.Wang, H.Zhou and T.Lin, “High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer,” ACS Applied Energy and Materials, vol. 1, no. 2, pp. 431–439, 2018.
  • [19] J. Deng, C. He, Y. Peng, J.Wang, X. Long, P.Li, A.Chan, “Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure,” Synthetic Metals, vol. 139, no. 2, pp. 295–301, 2003.
  • [20] T. Lavanya and S. Ramaprabhu, “Copper nanoparticles incorporated porous carbon nanofibers as a freestanding binder-free electrode for symmetric supercapacitor with enhanced electrochemical performance,” Materials Research Express, vol. 6, no. 10, p. 105005, 2019.
  • [21] B. H. Kim and K. S. Yang, “Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide,” Electrochimica Acta, vol. 88, pp. 597–603, 2013.
  • [22] İ. Yılmaz, A. Gelir, O. Yargi, U. Sahinturk, and O. K. Ozdemir, “Electrodeposition of zinc and reduced graphene oxide on porous nickel electrodes for high performance supercapacitors,” Journal of Physical Chemistry and Solids, vol. 138, p. 109307, 2020.
  • [23] J. Ge, G.Fan, Y. Si, J. He, H. Kim, B.Ding, S. Al-Deyab, M. El-Newehy, and J. Yu, “Elastic and hierarchical porous carbon nanofibrous membranes incorporated with NiFe2O4 nanocrystals for highly efficient capacitive energy storage,” Nanoscale, vol. 8, no. 4, pp. 2195–2204, 2016.
  • [24] Z.-Y. Yu, L.-F. Chen, L.-T. Song, Y.-W. Zhu, H.-X. Ji, and S.-H. Yu, “Free-standing boron and oxygen co-doped carbon nanofiber films for large volumetric capacitance and high rate capability supercapacitors,” Nano Energy, vol. 15, pp. 235–243, 2015.
  • [25] J. Kim, Y. J. Heo, J. Y. Hong, and S. K. Kim, “Preparation of porous carbon nanofibers with tailored porosity for electrochemical capacitor electrodes,” Materials, vol. 13, no. 13, p. 729, 2020.
  • [26] Y. Yao, P. Liu, S. Zeng, T. Lan, H. Huang, X. Zeng and J. Zou, “Nitrogen-doped graphitic hierarchically porous carbon nanofibers obtained via bimetallic-coordination organic framework modification and their application in supercapacitors,” Dalton Transactions, vol. 47, no. 21, pp. 7316–7326, 2018.
  • [27] X. Tian, N, Zhao, Y. Song, K. Wang, D. Xu, X. Li Q. Guo and L. Liu, “Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution,” Electrochimica Acta, vol. 185, pp. 40–51, 2015.
  • [28] Q. Xu, X. Yu, Q. Liang, Y. Bai, Z. H. Huang, and F. Kang, “Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes,” Journal of Electroanalytical and Chemistry, vol. 739, pp. 84–8.8, 2015.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği, Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Ümran Kurtan 0000-0002-1279-7729

Proje Numarası Project No: 9160035
Yayımlanma Tarihi 30 Ekim 2021
Gönderilme Tarihi 9 Şubat 2021
Kabul Tarihi 9 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 5

Kaynak Göster

APA Kurtan, Ü. (2021). Carbon Nanofibers Fabricated from Electrospun Nano-sized boron oxide/Polyacrylonitrile Nanofibers as electrode for Supercapacitors. Sakarya University Journal of Science, 25(5), 1180-1188. https://doi.org/10.16984/saufenbilder.877089
AMA Kurtan Ü. Carbon Nanofibers Fabricated from Electrospun Nano-sized boron oxide/Polyacrylonitrile Nanofibers as electrode for Supercapacitors. SAUJS. Ekim 2021;25(5):1180-1188. doi:10.16984/saufenbilder.877089
Chicago Kurtan, Ümran. “Carbon Nanofibers Fabricated from Electrospun Nano-Sized Boron oxide/Polyacrylonitrile Nanofibers As Electrode for Supercapacitors”. Sakarya University Journal of Science 25, sy. 5 (Ekim 2021): 1180-88. https://doi.org/10.16984/saufenbilder.877089.
EndNote Kurtan Ü (01 Ekim 2021) Carbon Nanofibers Fabricated from Electrospun Nano-sized boron oxide/Polyacrylonitrile Nanofibers as electrode for Supercapacitors. Sakarya University Journal of Science 25 5 1180–1188.
IEEE Ü. Kurtan, “Carbon Nanofibers Fabricated from Electrospun Nano-sized boron oxide/Polyacrylonitrile Nanofibers as electrode for Supercapacitors”, SAUJS, c. 25, sy. 5, ss. 1180–1188, 2021, doi: 10.16984/saufenbilder.877089.
ISNAD Kurtan, Ümran. “Carbon Nanofibers Fabricated from Electrospun Nano-Sized Boron oxide/Polyacrylonitrile Nanofibers As Electrode for Supercapacitors”. Sakarya University Journal of Science 25/5 (Ekim 2021), 1180-1188. https://doi.org/10.16984/saufenbilder.877089.
JAMA Kurtan Ü. Carbon Nanofibers Fabricated from Electrospun Nano-sized boron oxide/Polyacrylonitrile Nanofibers as electrode for Supercapacitors. SAUJS. 2021;25:1180–1188.
MLA Kurtan, Ümran. “Carbon Nanofibers Fabricated from Electrospun Nano-Sized Boron oxide/Polyacrylonitrile Nanofibers As Electrode for Supercapacitors”. Sakarya University Journal of Science, c. 25, sy. 5, 2021, ss. 1180-8, doi:10.16984/saufenbilder.877089.
Vancouver Kurtan Ü. Carbon Nanofibers Fabricated from Electrospun Nano-sized boron oxide/Polyacrylonitrile Nanofibers as electrode for Supercapacitors. SAUJS. 2021;25(5):1180-8.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.