Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 25 Sayı: 6, 1287 - 1294, 31.12.2021
https://doi.org/10.16984/saufenbilder.893343

Öz

Kaynakça

  • [1] C. Chengyi, T. Genshu, and Z. Lei, “In-plane nonlinear buckling analysis of circular arches considering shear deformation,” J. Constr. Steel Res., vol. 164, p. 105762, 2020.
  • [2] M. Gowthamuneswara Rao, A. Praveen Kumar, C. Nagaraj, and L. Ponraj Sankar, “Investigations on the lateral impact behaviour of combined geometry tubular structures and its effect of cap fillet radius,” Mater. Today Proc., vol. 27, pp. 1912–1916, 2020.
  • [3] P. Wang, X. Wang, and N. Ma, “Vertical shear buckling capacity of web-posts in castellated steel beams with fillet corner hexagonal web openings,” Eng. Struct., vol. 75, pp. 315–326, 2014.
  • [4] Z. Tang, W. Zhang, J. Yu, and S. Pospíšil, “Prediction of the elastoplastic in-plane buckling of parabolic steel arch bridges,” J. Constr. Steel Res., vol. 168, 2020.
  • [5] J. Q. Yang, T. Q. Liu, and P. Feng, “Enhancing flange local buckling strength of pultruded GFRP open-section beams,” Compos. Struct., vol. 244, no. March, p. 112313, 2020.
  • [6] Y. L. Pi and M. A. Bradford, “Nonlinear dynamic buckling of shallow circular arches under a sudden uniform radial load,” J. Sound Vib., vol. 331, no. 18, pp. 4199–4217, 2012.
  • [7] A. Szychowski, “A theoretical analysis of the local buckling in thin-walled bars with open cross-section subjected to warping torsion,” Thin-Walled Struct., vol. 76, pp. 42–55, 2014.
  • [8] Y. L. Pi and M. A. Bradford, “Elasto-plastic buckling and postbuckling of arches subjected to a central load,” Comput. Struct., vol. 81, no. 18–19, pp. 1811–1825, 2003.
  • [9] Y. L. Pi, M. A. Bradford, and F. Tin-Loi, “Flexural-torsional buckling of shallow arches with open thin-walled section under uniform radial loads,” Thin-Walled Struct., vol. 45, no. 3, pp. 352–362, 2007.
  • [10] A. Asadi, A. H. Sheikh, and O. T. Thomsen, “Buckling behaviour of thin-walled laminated composite beams having open and closed sections subjected to axial and end moment loading,” Thin-Walled Struct., vol. 141, no. April, pp. 85–96, 2019.
  • [11] İ. Kocabaş and H. Yılmaz, “In-plane buckling of semi-cylindrical shells with elastic edge restraints under a central radial load,” Thin-Walled Struct., vol. 167, pp. 148141, 2021.

In-Plane Buckling of Open-Section Shell Segments

Yıl 2021, Cilt: 25 Sayı: 6, 1287 - 1294, 31.12.2021
https://doi.org/10.16984/saufenbilder.893343

Öz

The present study investigates elastic buckling behavior of open-section shell segments under action of a central radial load. A design parameter is expressed to characterize the influence of fillet radius on load-bearing capacity. A reduction factor equation is developed as a multivariate function of shell parameters, which evaluates the amount of decrease in load-bearing capacity of the structure caused by the corner fillet. In addition, an expression to predict limit load of the shell structure under clamped end conditions is introduced. Furthermore, a parametric study is performed to reveal the influence of fillet radius and radius-to-thickness ratio on the limit load as well as deformation patterns of the open-section shells. Results show that corner fillets has a significant effect on the limit load of the open-section shell segments under in-plane loading.

Teşekkür

The authors are greatly thankful to Eskisehir Technical University, Turkey for providing the facilities in developing the paper.

Kaynakça

  • [1] C. Chengyi, T. Genshu, and Z. Lei, “In-plane nonlinear buckling analysis of circular arches considering shear deformation,” J. Constr. Steel Res., vol. 164, p. 105762, 2020.
  • [2] M. Gowthamuneswara Rao, A. Praveen Kumar, C. Nagaraj, and L. Ponraj Sankar, “Investigations on the lateral impact behaviour of combined geometry tubular structures and its effect of cap fillet radius,” Mater. Today Proc., vol. 27, pp. 1912–1916, 2020.
  • [3] P. Wang, X. Wang, and N. Ma, “Vertical shear buckling capacity of web-posts in castellated steel beams with fillet corner hexagonal web openings,” Eng. Struct., vol. 75, pp. 315–326, 2014.
  • [4] Z. Tang, W. Zhang, J. Yu, and S. Pospíšil, “Prediction of the elastoplastic in-plane buckling of parabolic steel arch bridges,” J. Constr. Steel Res., vol. 168, 2020.
  • [5] J. Q. Yang, T. Q. Liu, and P. Feng, “Enhancing flange local buckling strength of pultruded GFRP open-section beams,” Compos. Struct., vol. 244, no. March, p. 112313, 2020.
  • [6] Y. L. Pi and M. A. Bradford, “Nonlinear dynamic buckling of shallow circular arches under a sudden uniform radial load,” J. Sound Vib., vol. 331, no. 18, pp. 4199–4217, 2012.
  • [7] A. Szychowski, “A theoretical analysis of the local buckling in thin-walled bars with open cross-section subjected to warping torsion,” Thin-Walled Struct., vol. 76, pp. 42–55, 2014.
  • [8] Y. L. Pi and M. A. Bradford, “Elasto-plastic buckling and postbuckling of arches subjected to a central load,” Comput. Struct., vol. 81, no. 18–19, pp. 1811–1825, 2003.
  • [9] Y. L. Pi, M. A. Bradford, and F. Tin-Loi, “Flexural-torsional buckling of shallow arches with open thin-walled section under uniform radial loads,” Thin-Walled Struct., vol. 45, no. 3, pp. 352–362, 2007.
  • [10] A. Asadi, A. H. Sheikh, and O. T. Thomsen, “Buckling behaviour of thin-walled laminated composite beams having open and closed sections subjected to axial and end moment loading,” Thin-Walled Struct., vol. 141, no. April, pp. 85–96, 2019.
  • [11] İ. Kocabaş and H. Yılmaz, “In-plane buckling of semi-cylindrical shells with elastic edge restraints under a central radial load,” Thin-Walled Struct., vol. 167, pp. 148141, 2021.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Haluk Yılmaz 0000-0002-6750-3708

İbrahim Kocabaş 0000-0003-0600-2034

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 8 Mart 2021
Kabul Tarihi 11 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 6

Kaynak Göster

APA Yılmaz, H., & Kocabaş, İ. (2021). In-Plane Buckling of Open-Section Shell Segments. Sakarya University Journal of Science, 25(6), 1287-1294. https://doi.org/10.16984/saufenbilder.893343
AMA Yılmaz H, Kocabaş İ. In-Plane Buckling of Open-Section Shell Segments. SAUJS. Aralık 2021;25(6):1287-1294. doi:10.16984/saufenbilder.893343
Chicago Yılmaz, Haluk, ve İbrahim Kocabaş. “In-Plane Buckling of Open-Section Shell Segments”. Sakarya University Journal of Science 25, sy. 6 (Aralık 2021): 1287-94. https://doi.org/10.16984/saufenbilder.893343.
EndNote Yılmaz H, Kocabaş İ (01 Aralık 2021) In-Plane Buckling of Open-Section Shell Segments. Sakarya University Journal of Science 25 6 1287–1294.
IEEE H. Yılmaz ve İ. Kocabaş, “In-Plane Buckling of Open-Section Shell Segments”, SAUJS, c. 25, sy. 6, ss. 1287–1294, 2021, doi: 10.16984/saufenbilder.893343.
ISNAD Yılmaz, Haluk - Kocabaş, İbrahim. “In-Plane Buckling of Open-Section Shell Segments”. Sakarya University Journal of Science 25/6 (Aralık 2021), 1287-1294. https://doi.org/10.16984/saufenbilder.893343.
JAMA Yılmaz H, Kocabaş İ. In-Plane Buckling of Open-Section Shell Segments. SAUJS. 2021;25:1287–1294.
MLA Yılmaz, Haluk ve İbrahim Kocabaş. “In-Plane Buckling of Open-Section Shell Segments”. Sakarya University Journal of Science, c. 25, sy. 6, 2021, ss. 1287-94, doi:10.16984/saufenbilder.893343.
Vancouver Yılmaz H, Kocabaş İ. In-Plane Buckling of Open-Section Shell Segments. SAUJS. 2021;25(6):1287-94.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.