Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 26 Sayı: 5, 915 - 930, 20.10.2022
https://doi.org/10.16984/saufenbilder.1080172

Öz

Kaynakça

  • [1] K. Ganesan, C. Kailasanathan, N. Rajini, Sikiru O. Ismail, N. Ayrilmis, F. Mohammad et al., “Assessment on hybrid jute/coir fibers reinforced polyester composite with hybrid fillers under different environmental conditions,” Construction and Building Materials, vol. 301, no. June 2020, p. 124117, Sep. 2021.
  • [2] Z. A. Oguz, A. Erklig, O. Y. Bozkurt, “Degradation of hybrid aramid/glass/epoxy composites hydrothermally aged in distilled water,” Journal of Composite Materials, vol. 55, no. 15, pp. 2043-2059, 2020.
  • [3] Z. A. Oguz, A. Erklig, O. Y. Bozkurt, “Effects of hydrothermal seawater aging on the mechanical properties and water absorption of glass/aramid/epoxy hybrid composites,” International Polymer Processing, vol. 36, no. 1, pp. 79-93, 2021.
  • [4] M. J. Suriani, H. Z. Rapi, R. A. Ilyas, M. Petrů, S. M. Sapuan, “Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review,” Polymers (Basel), vol. 13, no. 8, p. 1323, Apr. 2021.
  • [5] H. Chandekar, V. Chaudhari, S. Waigaonkar, “A review of jute fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 26, pp. 2079–2082, 2020.
  • [6] P. Sai Shravan Kumar, K. Viswanath Allamraju, “A Review of Natural Fiber Composites [Jute, Sisal, Kenaf],” Materials Today: Proceedings, vol. 18, pp. 2556–2562, 2019.
  • [7] J. B. Sajin, P. Babu Aurtherson, J. S. Binoj, N. Manikandan, M. S. Senthil Saravanan, T. M. Haarison, “Influence of fiber length on mechanical properties and microstructural analysis of jute fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 39, pp. 398–402, 2021.
  • [8] T. J. Singh, S. Samanta, “Characterization of Kevlar Fiber and Its Composites: A Review,” Materials Today: Proceedings, vol. 2, no. 4–5, pp. 1381–1387, 2015.
  • [9] S. Rajesh, B. Vijayaramnath, C. Elanchezhian, S. Vivek, M. H. Prasadh, M. Kesavan, “Experimental Investigation of Tensile and Impact Behavior of Aramid-Natural Fiber Composite,” Materials Today: Proceedings, vol. 16, pp. 699–705, 2019.
  • [10] B. Karacor, “The Usage of Natural Fiber Reinforced Hybrid Composite Materials as An Alternative to Automobile Interior Plastics,” MSc Thesis, Cukurova University, 2020.
  • [11] G. Santosh Gangappa, S. Sripad Kulkarni, “Experimentation and validation of basalt & jute fiber reinforced in polymer matrix hybrid composites,” Materials Today: Proceedings, vol. 38, pp. 2372–2379, 2021.
  • [12] A. T. Seyhan, F. H. Gojny, M. Tanoǧlu, K. Schulte, “Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites,” European Polymer Journal, vol. 43, no. 2, pp. 374–379, 2007.
  • [13] F. C. Campbell, Structural Composite Materials, ASM International, pp.64-67,2010.
  • [14] S. Ravindran, G. G. Sozhamannan, L. Saravanan, V. S. K. Venkatachalapathy, “Study on mechanical behaviour of natural fiber reinforced vinylester hybrid composites,” Materials Today: Proceedings, vol. 45, pp. 4526–4530, 2021.
  • [15] Bhanupratap R, Dr H C Chittappa, “Study of Tensile Behaviour by Variation of Kevlar to the Jute Fibre Epoxy Hybrid Composites,” International Journal of Engineering Research and Technology, vol. V6, no. 06, pp. 1039–1043, Jun. 2017.
  • [16] R. Bhanupratap, “Jute/Kevlar Fibre Reinforced Epoxy Composites: A Dynamic Mechanical Study,” Materials Today: Proceedings, vol. 22, pp. 3145–3151, 2020.
  • [17] S. M. Maharana, P. Samal, J. Dehury, P. P. Mohanty, “Effect of fiber content and orientation on mechanical properties of epoxy composites reinforced with jute and Kevlar,” Materials Today: Proceedings, vol. 26, pp. 273–277, 2020.
  • [18] R. Bhanupratap, “Impact damage resistance of Jute/Kevlar hybrid composite laminates subjected to varying heights: An experimental approach,” Materials Today: Proceedings, vol. 39, pp. 1396–1401, 2021.
  • [19] S. M. Maharana, M. K. Pandit, A. K. Pradhan, “Influence of fumed silica nanofiller and stacking sequence on interlaminar fracture behaviour of bidirectional jute-kevlar hybrid nanocomposite,” Polymer Testing, vol. 93, no. September 2020, p. 106898, Jan. 2021.
  • [20] S. M. Maharana, A. K. Pradhan, M. K. Pandit, “Moisture absorption behaviour of nanofiller reinforced jute-kevlar hybrid polymer composite,” Materials Today: Proceedings, vol. 26, pp. 775–780, 2020.
  • [21] M. S. Chowdary, G. Raghavendra, M. S. R. N. Kumar, S. Ojha, V. Boggarapu, “Influence of Nano-Silica on Enhancing the Mechanical Properties of Sisal/Kevlar Fiber Reinforced Polyester Hybrid Composites,” Silicon, vol.14, no.2, pp. 539-546, 2022.
  • [22] N. F. Dogan, O. Ozbek, A. Erklig, “Effect of graphene nanoplatelets on mechanical and impact properties of an aramid/glass-reinforced epoxy composite,” Materials Testing, vol. 64, no. 4, pp. 490–501, 2022.
  • [23] M. E. Cetin, A. C. Tatar, O. Demir, G. Onal, A. Avcı, “Effects of cryogenic and warm temperatures on quasi-static penetration resistance of carbon-aramid hybrid nanocomposites reinforced using halloysite nanotubes,” Mechanics of Materials, vol. 155, no. November, p. 103780, 2021.
  • [24] M. E. Cetin, Y. Bastosun, A. C. Tatar, M. H. Cetin, O. Demir, G. Onal, A. Avcı, “The effect of halloysite nanotube modification on wear behavior of carbon-aramid fiber reinforced hybrid nanocomposites,” Polymer Composites, vol. 43, no. 1, pp. 624–637, 2022.
  • [25] M. E. Cetin, “Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive,” Gazi University Journal of Science Part C: Design and Technology, vol. 9, no. 3, pp. 492–504, 2021.
  • [26] T. G. Targino, S. R. L. Tinô, E. M. F. Aquino, “Anisotropy, hole, and hybridization influences in polyester polymer composites reinforced by glass and glass/Kevlar,” Polymer Composites, vol. 40, no. 12, pp. 4669–4681, Dec. 2019.
  • [27] R. C. T. S. Felipe, R. N. B. Felipe, A. C. M. C. Batista, E. M. F. Aquino, “Influence of environmental aging in two polymer-reinforced composites using different hybridization methods: Glass/Kevlar fiber hybrid strands and in the weft and warp alternating Kevlar and glass fiber strands,” Composites Part B: Engineering, vol. 174, no. June, p. 106994, Oct. 2019.
  • [28] Z. Edward Kennedy, A. Inigo Raja M, “Influence of stacking sequence and hybridization on the mechanical and tribological properties of glass and jute fiber composites,” Materials Today: Proceedings, pp. 4–9, Jul. 2021.
  • [29] P. A. Thakare, N. Kumar, V. B. Ugale, “Sound transmission loss and flexural strength assessment of hybrid composite reinforced with natural fibers and kevlar,” Materials Today: Proceedings, vol. 19, pp. 686–690, 2019.
  • [30] M. C. Swami, B. M. Dabade, “Flexural and Inter-laminar shear stress properties of glass fiber reinforced Iso-polyester, Epoxy & vinyl ester composites,” Materials Today: Proceedings, vol. 51 pp. 646–650, 2022.
  • [31] J. M. Khare, S. Dahiya, B. Gangil, L. Ranakoti, “Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics,” Materials Today: Proceedings, vol. 38, pp. 345–349, 2021.
  • [32] O. Y. Bozkurt, A. Erklig, M. Bulut, “Hybridization effects on charpy impact behavior of basalt/aramid fiber reinforced hybrid composite laminates,” Polymer Composites, vol. 39, no. 2, pp. 467–475, 2018.
  • [33] M. Bulut, O. Y. Bozkurt, A. Erklig, “Damping and vibration characteristics of basalt-aramid/epoxy hybrid composite laminates,” Journal of Polymer Engineering, vol. 36, no. 2, pp. 173–180, 2016.
  • [34] Kumascı, “Technical characteristics of Jute fiber,” 2021. [Online]. Available: https://www.kumasci.com/urun/kanavice-jut-telis-cuval-kumasi-ham-en-sik-jut-10-onz-150-cm-en/7392.
  • [35] Kompozitshop, “Technical properties of Aramid fiber,” 2021. [Online]. Available: https://www.kompozitshop.com/aramid-fiber-kevlar-elyaf-takviyeler.
  • [36] Poliya, “Polyester Properties,” 2021. [Online]. Available: https://www.poliya.com/tr/el-yatirmasi-ve-elyaf-puskurtme.
  • [37] Poliya, “Vinylester Properties,” 2021. [Online]. Available: https://www.poliya.com/tr/bisfenol-a-epoksi-bazli-vinilester-recineler.
  • [38] ASTM D3039/D3039-M, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Material,” ASTM International, 2000.
  • [39] ASTM E92-17, “Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials,” ASTM International 2017.
  • [40] Y. Dobah, M. Bourchak, A. Bezazi, A. Belaadi, F. Scarpa, “Multi-axial mechanical characterization of jute fiber/polyester composite materials,” Composites Part B: Engineering, vol. 90, pp. 450–456, Apr. 2016.
  • [41] A. P. Abhishek, B. S. K. Gowda, G. L. E. Prasad, R. Velmurugan, “Probabilistic Study of Tensile and Flexure Properties of Untreated Jute Fiber Reinforced Polyester Composite,” Materials Today: Proceedings, vol. 4, no. 10, pp. 11050–11055, 2017.
  • [42] C. Tezara, J.P. Siregar, M.H.M. Hamdan, T. Rihayat, D. Bachtiar, D. F. Fitriyana P. Prayitno, “Influence of layering sequences on tensile properties of hybrid woven Jute/Ramie fibre reinforced polyester composites,” Materials Today: Proceedings, vol. 48, pp. 1836–1841, 2022.
  • [43] T. Singh, B. Gangil, A. Patnaik, S. Kumar, A. Rishiraj, G. Fekete, “Physico-mechanical, thermal and dynamic mechanical behaviour of natural-synthetic fiber reinforced vinylester based homogenous and functionally graded composites,” Materials Research Express, vol. 6, no. 2, p. 025704, Nov. 2018.
  • [44] S. Anidha, N. Latha, M. Muthukkumar, “Reinforcement of Aramid fiber with bagasse epoxy bio-degradable composite: Investigations on mechanical properties and surface morphology,” Journal of Materials Research and Technology, vol. 8, no. 3, pp. 3198–3212, 2019.
  • [45] R. Bhanupratap, “Study on characterization and sorption behavior of jute reinforced epoxy composite: Hybridization effect of Kevlar fabric,” Materials Today: Proceedings, vol. 27, no. 2020, pp. 2017–2021, 2019.
  • [46] R. C. T. Dos Santos Felipe, R. N. B. Felipe, A. C. De Melo Caldas Batista, E. M. F. Aquino, “Polymer composites reinforced with hybrid fiber fabrics,” Materials Research, vol. 20, no. 2, pp. 555–567, 2017.

Characterization Of Jute/Aramid Hybrid Composite Materials with Using Different Resins

Yıl 2022, Cilt: 26 Sayı: 5, 915 - 930, 20.10.2022
https://doi.org/10.16984/saufenbilder.1080172

Öz

For the last twenty to thirty years, interest in the use of hybrid fiber-reinforced composites has gradually increased due to their potential for various applications. The balanced strength and stiffness properties of hybrid composites, along with the advantages of lighter weight and lower cost, have made them an important step toward replacing traditional materials. In this study, a hybrid composite was made from a combination of Jute fabric from natural fibers, Aramid fabric from synthetic fibers, and two different resins (polyester and vinylester). This type of study was proposed because there is little research in the literature on how the use of polyester and vinyl ester resins affects the mechanical properties of homogeneous composites and hybrid composites. The vacuum assisted resin transfer molding process was used for the fabrication. The mechanical properties of the manufactured products were determined by tensile and hardness tests, and their morphological structures were examined by taking scanning electron microscope images. The results indicate that the value of tensile strength and elastic modulus of the Jute/Aramid hybrid samples in the productions prepared with polyester resin is 37.6% and %12.28, respectively, higher than in those made with vinyl ester resin. When comparing the values for microhardness, the results of the Jute/Aramid hybrid specimens produced with polyester resin were 1.20 times higher than those produced with vinyl ester resin. Scanning electron microscope images of the samples also clearly show that the bonding between matrix and fiber is better in polyester resin samples.

Kaynakça

  • [1] K. Ganesan, C. Kailasanathan, N. Rajini, Sikiru O. Ismail, N. Ayrilmis, F. Mohammad et al., “Assessment on hybrid jute/coir fibers reinforced polyester composite with hybrid fillers under different environmental conditions,” Construction and Building Materials, vol. 301, no. June 2020, p. 124117, Sep. 2021.
  • [2] Z. A. Oguz, A. Erklig, O. Y. Bozkurt, “Degradation of hybrid aramid/glass/epoxy composites hydrothermally aged in distilled water,” Journal of Composite Materials, vol. 55, no. 15, pp. 2043-2059, 2020.
  • [3] Z. A. Oguz, A. Erklig, O. Y. Bozkurt, “Effects of hydrothermal seawater aging on the mechanical properties and water absorption of glass/aramid/epoxy hybrid composites,” International Polymer Processing, vol. 36, no. 1, pp. 79-93, 2021.
  • [4] M. J. Suriani, H. Z. Rapi, R. A. Ilyas, M. Petrů, S. M. Sapuan, “Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review,” Polymers (Basel), vol. 13, no. 8, p. 1323, Apr. 2021.
  • [5] H. Chandekar, V. Chaudhari, S. Waigaonkar, “A review of jute fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 26, pp. 2079–2082, 2020.
  • [6] P. Sai Shravan Kumar, K. Viswanath Allamraju, “A Review of Natural Fiber Composites [Jute, Sisal, Kenaf],” Materials Today: Proceedings, vol. 18, pp. 2556–2562, 2019.
  • [7] J. B. Sajin, P. Babu Aurtherson, J. S. Binoj, N. Manikandan, M. S. Senthil Saravanan, T. M. Haarison, “Influence of fiber length on mechanical properties and microstructural analysis of jute fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 39, pp. 398–402, 2021.
  • [8] T. J. Singh, S. Samanta, “Characterization of Kevlar Fiber and Its Composites: A Review,” Materials Today: Proceedings, vol. 2, no. 4–5, pp. 1381–1387, 2015.
  • [9] S. Rajesh, B. Vijayaramnath, C. Elanchezhian, S. Vivek, M. H. Prasadh, M. Kesavan, “Experimental Investigation of Tensile and Impact Behavior of Aramid-Natural Fiber Composite,” Materials Today: Proceedings, vol. 16, pp. 699–705, 2019.
  • [10] B. Karacor, “The Usage of Natural Fiber Reinforced Hybrid Composite Materials as An Alternative to Automobile Interior Plastics,” MSc Thesis, Cukurova University, 2020.
  • [11] G. Santosh Gangappa, S. Sripad Kulkarni, “Experimentation and validation of basalt & jute fiber reinforced in polymer matrix hybrid composites,” Materials Today: Proceedings, vol. 38, pp. 2372–2379, 2021.
  • [12] A. T. Seyhan, F. H. Gojny, M. Tanoǧlu, K. Schulte, “Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites,” European Polymer Journal, vol. 43, no. 2, pp. 374–379, 2007.
  • [13] F. C. Campbell, Structural Composite Materials, ASM International, pp.64-67,2010.
  • [14] S. Ravindran, G. G. Sozhamannan, L. Saravanan, V. S. K. Venkatachalapathy, “Study on mechanical behaviour of natural fiber reinforced vinylester hybrid composites,” Materials Today: Proceedings, vol. 45, pp. 4526–4530, 2021.
  • [15] Bhanupratap R, Dr H C Chittappa, “Study of Tensile Behaviour by Variation of Kevlar to the Jute Fibre Epoxy Hybrid Composites,” International Journal of Engineering Research and Technology, vol. V6, no. 06, pp. 1039–1043, Jun. 2017.
  • [16] R. Bhanupratap, “Jute/Kevlar Fibre Reinforced Epoxy Composites: A Dynamic Mechanical Study,” Materials Today: Proceedings, vol. 22, pp. 3145–3151, 2020.
  • [17] S. M. Maharana, P. Samal, J. Dehury, P. P. Mohanty, “Effect of fiber content and orientation on mechanical properties of epoxy composites reinforced with jute and Kevlar,” Materials Today: Proceedings, vol. 26, pp. 273–277, 2020.
  • [18] R. Bhanupratap, “Impact damage resistance of Jute/Kevlar hybrid composite laminates subjected to varying heights: An experimental approach,” Materials Today: Proceedings, vol. 39, pp. 1396–1401, 2021.
  • [19] S. M. Maharana, M. K. Pandit, A. K. Pradhan, “Influence of fumed silica nanofiller and stacking sequence on interlaminar fracture behaviour of bidirectional jute-kevlar hybrid nanocomposite,” Polymer Testing, vol. 93, no. September 2020, p. 106898, Jan. 2021.
  • [20] S. M. Maharana, A. K. Pradhan, M. K. Pandit, “Moisture absorption behaviour of nanofiller reinforced jute-kevlar hybrid polymer composite,” Materials Today: Proceedings, vol. 26, pp. 775–780, 2020.
  • [21] M. S. Chowdary, G. Raghavendra, M. S. R. N. Kumar, S. Ojha, V. Boggarapu, “Influence of Nano-Silica on Enhancing the Mechanical Properties of Sisal/Kevlar Fiber Reinforced Polyester Hybrid Composites,” Silicon, vol.14, no.2, pp. 539-546, 2022.
  • [22] N. F. Dogan, O. Ozbek, A. Erklig, “Effect of graphene nanoplatelets on mechanical and impact properties of an aramid/glass-reinforced epoxy composite,” Materials Testing, vol. 64, no. 4, pp. 490–501, 2022.
  • [23] M. E. Cetin, A. C. Tatar, O. Demir, G. Onal, A. Avcı, “Effects of cryogenic and warm temperatures on quasi-static penetration resistance of carbon-aramid hybrid nanocomposites reinforced using halloysite nanotubes,” Mechanics of Materials, vol. 155, no. November, p. 103780, 2021.
  • [24] M. E. Cetin, Y. Bastosun, A. C. Tatar, M. H. Cetin, O. Demir, G. Onal, A. Avcı, “The effect of halloysite nanotube modification on wear behavior of carbon-aramid fiber reinforced hybrid nanocomposites,” Polymer Composites, vol. 43, no. 1, pp. 624–637, 2022.
  • [25] M. E. Cetin, “Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive,” Gazi University Journal of Science Part C: Design and Technology, vol. 9, no. 3, pp. 492–504, 2021.
  • [26] T. G. Targino, S. R. L. Tinô, E. M. F. Aquino, “Anisotropy, hole, and hybridization influences in polyester polymer composites reinforced by glass and glass/Kevlar,” Polymer Composites, vol. 40, no. 12, pp. 4669–4681, Dec. 2019.
  • [27] R. C. T. S. Felipe, R. N. B. Felipe, A. C. M. C. Batista, E. M. F. Aquino, “Influence of environmental aging in two polymer-reinforced composites using different hybridization methods: Glass/Kevlar fiber hybrid strands and in the weft and warp alternating Kevlar and glass fiber strands,” Composites Part B: Engineering, vol. 174, no. June, p. 106994, Oct. 2019.
  • [28] Z. Edward Kennedy, A. Inigo Raja M, “Influence of stacking sequence and hybridization on the mechanical and tribological properties of glass and jute fiber composites,” Materials Today: Proceedings, pp. 4–9, Jul. 2021.
  • [29] P. A. Thakare, N. Kumar, V. B. Ugale, “Sound transmission loss and flexural strength assessment of hybrid composite reinforced with natural fibers and kevlar,” Materials Today: Proceedings, vol. 19, pp. 686–690, 2019.
  • [30] M. C. Swami, B. M. Dabade, “Flexural and Inter-laminar shear stress properties of glass fiber reinforced Iso-polyester, Epoxy & vinyl ester composites,” Materials Today: Proceedings, vol. 51 pp. 646–650, 2022.
  • [31] J. M. Khare, S. Dahiya, B. Gangil, L. Ranakoti, “Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics,” Materials Today: Proceedings, vol. 38, pp. 345–349, 2021.
  • [32] O. Y. Bozkurt, A. Erklig, M. Bulut, “Hybridization effects on charpy impact behavior of basalt/aramid fiber reinforced hybrid composite laminates,” Polymer Composites, vol. 39, no. 2, pp. 467–475, 2018.
  • [33] M. Bulut, O. Y. Bozkurt, A. Erklig, “Damping and vibration characteristics of basalt-aramid/epoxy hybrid composite laminates,” Journal of Polymer Engineering, vol. 36, no. 2, pp. 173–180, 2016.
  • [34] Kumascı, “Technical characteristics of Jute fiber,” 2021. [Online]. Available: https://www.kumasci.com/urun/kanavice-jut-telis-cuval-kumasi-ham-en-sik-jut-10-onz-150-cm-en/7392.
  • [35] Kompozitshop, “Technical properties of Aramid fiber,” 2021. [Online]. Available: https://www.kompozitshop.com/aramid-fiber-kevlar-elyaf-takviyeler.
  • [36] Poliya, “Polyester Properties,” 2021. [Online]. Available: https://www.poliya.com/tr/el-yatirmasi-ve-elyaf-puskurtme.
  • [37] Poliya, “Vinylester Properties,” 2021. [Online]. Available: https://www.poliya.com/tr/bisfenol-a-epoksi-bazli-vinilester-recineler.
  • [38] ASTM D3039/D3039-M, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Material,” ASTM International, 2000.
  • [39] ASTM E92-17, “Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials,” ASTM International 2017.
  • [40] Y. Dobah, M. Bourchak, A. Bezazi, A. Belaadi, F. Scarpa, “Multi-axial mechanical characterization of jute fiber/polyester composite materials,” Composites Part B: Engineering, vol. 90, pp. 450–456, Apr. 2016.
  • [41] A. P. Abhishek, B. S. K. Gowda, G. L. E. Prasad, R. Velmurugan, “Probabilistic Study of Tensile and Flexure Properties of Untreated Jute Fiber Reinforced Polyester Composite,” Materials Today: Proceedings, vol. 4, no. 10, pp. 11050–11055, 2017.
  • [42] C. Tezara, J.P. Siregar, M.H.M. Hamdan, T. Rihayat, D. Bachtiar, D. F. Fitriyana P. Prayitno, “Influence of layering sequences on tensile properties of hybrid woven Jute/Ramie fibre reinforced polyester composites,” Materials Today: Proceedings, vol. 48, pp. 1836–1841, 2022.
  • [43] T. Singh, B. Gangil, A. Patnaik, S. Kumar, A. Rishiraj, G. Fekete, “Physico-mechanical, thermal and dynamic mechanical behaviour of natural-synthetic fiber reinforced vinylester based homogenous and functionally graded composites,” Materials Research Express, vol. 6, no. 2, p. 025704, Nov. 2018.
  • [44] S. Anidha, N. Latha, M. Muthukkumar, “Reinforcement of Aramid fiber with bagasse epoxy bio-degradable composite: Investigations on mechanical properties and surface morphology,” Journal of Materials Research and Technology, vol. 8, no. 3, pp. 3198–3212, 2019.
  • [45] R. Bhanupratap, “Study on characterization and sorption behavior of jute reinforced epoxy composite: Hybridization effect of Kevlar fabric,” Materials Today: Proceedings, vol. 27, no. 2020, pp. 2017–2021, 2019.
  • [46] R. C. T. Dos Santos Felipe, R. N. B. Felipe, A. C. De Melo Caldas Batista, E. M. F. Aquino, “Polymer composites reinforced with hybrid fiber fabrics,” Materials Research, vol. 20, no. 2, pp. 555–567, 2017.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Berkay Karacor 0000-0001-5208-366X

Mustafa Özcanlı 0000-0001-6088-2912

Yayımlanma Tarihi 20 Ekim 2022
Gönderilme Tarihi 28 Şubat 2022
Kabul Tarihi 15 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 5

Kaynak Göster

APA Karacor, B., & Özcanlı, M. (2022). Characterization Of Jute/Aramid Hybrid Composite Materials with Using Different Resins. Sakarya University Journal of Science, 26(5), 915-930. https://doi.org/10.16984/saufenbilder.1080172
AMA Karacor B, Özcanlı M. Characterization Of Jute/Aramid Hybrid Composite Materials with Using Different Resins. SAUJS. Ekim 2022;26(5):915-930. doi:10.16984/saufenbilder.1080172
Chicago Karacor, Berkay, ve Mustafa Özcanlı. “Characterization Of Jute/Aramid Hybrid Composite Materials With Using Different Resins”. Sakarya University Journal of Science 26, sy. 5 (Ekim 2022): 915-30. https://doi.org/10.16984/saufenbilder.1080172.
EndNote Karacor B, Özcanlı M (01 Ekim 2022) Characterization Of Jute/Aramid Hybrid Composite Materials with Using Different Resins. Sakarya University Journal of Science 26 5 915–930.
IEEE B. Karacor ve M. Özcanlı, “Characterization Of Jute/Aramid Hybrid Composite Materials with Using Different Resins”, SAUJS, c. 26, sy. 5, ss. 915–930, 2022, doi: 10.16984/saufenbilder.1080172.
ISNAD Karacor, Berkay - Özcanlı, Mustafa. “Characterization Of Jute/Aramid Hybrid Composite Materials With Using Different Resins”. Sakarya University Journal of Science 26/5 (Ekim 2022), 915-930. https://doi.org/10.16984/saufenbilder.1080172.
JAMA Karacor B, Özcanlı M. Characterization Of Jute/Aramid Hybrid Composite Materials with Using Different Resins. SAUJS. 2022;26:915–930.
MLA Karacor, Berkay ve Mustafa Özcanlı. “Characterization Of Jute/Aramid Hybrid Composite Materials With Using Different Resins”. Sakarya University Journal of Science, c. 26, sy. 5, 2022, ss. 915-30, doi:10.16984/saufenbilder.1080172.
Vancouver Karacor B, Özcanlı M. Characterization Of Jute/Aramid Hybrid Composite Materials with Using Different Resins. SAUJS. 2022;26(5):915-30.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.