Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane

Yıl 2022, Cilt: 26 Sayı: 6, 1196 - 1208, 31.12.2022
https://doi.org/10.16984/saufenbilder.1135285

Öz

In the production of polymeric membranes used in water treatment by the non-solvent-induced phase separation (NIPS) method, the materials used in the membrane casting solution and the interaction of these materials greatly affect the properties and performance of the obtained membranes. In this study, polyethersulfone (PES) membranes are produced by the NIPS method using two different solvents, dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP), and polyvinylpyrrolidone (PVP) as pore-forming agent. Chemical functional groups and morphologies of the produced membranes are investigated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. The viscosity of the membrane casting solutions and the hydrophilicity, porosity, mean pore size, and mechanical properties of the membranes are characterized. The pure water flux (PWF) of the membranes is determined at 1 and 3 bar pressures. The Hansen solubility parameters (HSP) of the materials used in membrane production are calculated and the effect of the interactions of DMSO, NMP, and PVP with PES and/or non-solvent (water) on the membrane properties are investigated.

Destekleyen Kurum

Istanbul University-Cerrahpasa Scientific Research Projects Coordination Unit

Proje Numarası

FYL-2020-34069

Kaynakça

  • [1] C. Aydıner, E. C. Doğan, B. K. Mert, A. O. Narcı, E. Durna, and A. Akbacak, “Water recovery from pulp and paper mill wastewater with integrated membrane system and minimization of concentrated waste,” Sakarya University Journal of Science, vol. 21, no. 2, pp. 252–260, 2017.
  • [2] F. İlhan, “Investigation of minimization and reusability of the reject from electrodialysis processes: an example textile wastewater,” Sakarya University Journal of Science, vol. 21, no. 5, pp. 943–950, 2017.
  • [3] A. Kausar, “Phase Inversion Technique-Based Polyamide Films and Their Applications: A Comprehensive Review,” Polymer-Plastics Technology and Engineering, vol. 56, no. 13, pp. 1421–1437, Sep. 2017.
  • [4] C. Algieri, S. Chakraborty, and U. Pal, “Efficacy of Phase Inversion Technique for Polymeric Membrane Fabrication,” Journal of Phase Change Materials, vol. 1, no. 1, p. 1, 2021, [Online]. Available: https://j-pcm.org/index.php/jpcm/article/view/10
  • [5] K. P. Wai, C. H. Koo, W. C. Chong, S. O. Lai, Y. L. Pang, “Improving hydrophilicity of polyethersulfone membrane using silver nanoparticles for humic substances removal,” International Journal of Engineering, Transactions B: Applications, vol. 31, no. 8, pp. 1364–1372, 2018.
  • [6] W. Wang, L. Zhu, B. Shan, C. Xie, C. Liu, F. Cui, G. Li, “Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties,” Journal of Membrane Science, vol. 548, no. December, pp. 459–469, 2018.
  • [7] X. Dong, A. Al-Jumaily, I. C. Escobar, “Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation (NIPS) fabrication of polysulfone membranes,” Membranes, vol. 8, no. 2, 2018.
  • [8] M. Amirilargani, T. Mohammadi, “Effects of PEG on morphology and permeation properties of polyethersulfone membranes,” Separation Science and Technology, vol. 44, no. 16, pp. 3854–3875, 2009.
  • [9] A. Marjani, A. T. Nakhjiri, M. Adimi, H. F. Jirandehi, S. Shirazian, “Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment,” Scientific Reports, vol. 10, no. 1, pp. 1–11, 2020.
  • [10] P. H. Krishnamurthy, L. T. Yogarathinam, A. Gangasalam, A. F. Ismail, “Influence of copper oxide nanomaterials in a poly(ether sulfone) membrane for improved humic acid and oil–water separation,” Journal of Applied Polymer Science, vol. 133, no. 36, pp. 1–10, 2016.
  • [11] S. L. Duraikkannu, R. Castro-Muñoz, A. Figoli, “A review on phase-inversion technique-based polymer microsphere fabrication,” Colloids and Interface Science Communications, vol. 40, no. December 2020, 2021.
  • [12] A. Fahrina, T. Maimun, S. Humaira, C.M. Rosnelly, M.R. Lubis, I. B. R. Sunarya, A. Ghufran, N. Arahman, “The morphology and filtration performances of poly (ether sulfone) membrane fabricated from different polymer solution,” MATEC Web of Conferences, vol. 197, pp. 1–4, 2018.
  • [13] P. D. Amin, V. Bhanushali, S. Joshi, “Role of Polyvinlyppyrrolidone in Membrane Technologies,” International Journal of ChemTech Research, vol. 11, no. 9, pp. 247–259, 2018.
  • [14] Y. W. Guo, W. Cui, W. Xu, Y. Jiang, H. Liu, J. Xu, Z. Gao, L. Liu, “Effect of PVP hydrophilic additive on the morphology and properties of PVDF porous membranes,” Advanced Materials Research, vol. 981, pp. 891–894, 2014.
  • [15] S. Mansur, M. H. D. Othman, A. F. Ismail, M. N. Z. Abidin, N. Said, P. S. Goh, H. Hasbullah, S. H. S. A. Kadir, F. Kamal, “Study on the effect of PVP additive on the performance of PSf/PVP ultrafiltration hollow fiber membrane,” Malaysian Journal of Fundamental and Applied Sciences, vol. 14, no. 3, pp. 343–347, 2018.
  • [16] H. Mokarizadeh, A. Raisi, “Industrial wastewater treatment using PES UF membranes containing hydrophilic additives: Experimental and modeling of fouling mechanism,” Environmental Technology and Innovation, vol. 23, p. 101701, 2021.
  • [17] M. A. Tofighy, T. Mohammadi, M. H. Sadeghi, “High-flux PVDF/PVP nanocomposite ultrafiltration membrane incorporated with graphene oxide nanoribbones with improved antifouling properties,” Journal of Applied Polymer Science, vol. 138, no. 4, pp. 1–15, 2021.
  • [18] Y. Kourde - Hanafi, P. Loulergue, A. Szymczyk, B. Van der Bruggen, M. Nachtnebel, M. Rabiller-Baudry, J. L. Audic, P. Pölt, K. Baddari, “Influence of PVP content on degradation of PES/PVP membranes: Insights from characterization of membranes with controlled composition,” Journal of Membrane Science, vol. 533, no. October 2016, pp. 261–269, 2017.
  • [19] S. Arefi-Oskoui, A. Khataee, V. Vatanpour, “Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes,” Separation and Purification Technology, vol. 184, pp. 97–118, 2017.
  • [20] N. Ucar, N. Kizildag, A. Onen, I. Karacan, O. Eren, “Polyacrylonitrile-polyaniline composite nanofiber webs: Effects of solvents, redoping process and dispersion technique,” Fibers and Polymers, vol. 16, no. 10, pp. 2223–2236, 2015.
  • [21] B. Eren, E. Eren, M. Guney, Y. C. Jean, J. D. Van Horn, “Positron annihilation lifetime spectroscopy study of polyvinylpyrrolidone-added polyvinylidene fluoride membranes: Investigation of free volume and permeation relationships,” Journal of Polymer Science, vol. 58, no. 4, pp. 589–598, 2020.
  • [22] L. F. Greenlee, N. S. Rentz, “Influence of nanoparticle processing and additives on PES casting solution viscosity and cast membrane characteristics,” Polymer, vol. 103, pp. 498–508, 2016.
  • [23] T. Anokhina, A. Raeva, S. Makaev, I. Borisov, V. Vasilevsky, and A. Volkov, “Express method of preparation of hollow fiber membrane samples for spinning solution optimization: Polysulfone as example,” Membranes, vol. 11, no. 6, 2021.
  • [24] D. S. Lakshmi, T. Cundari, E. Furia, A. Tagarelli, G. Fiorani, M. Carraro, A. Figoli, “Preparation of polymeric membranes and microcapsules using an ionic liquid as morphology control additive,” Macromolecular Symposia, vol. 357, no. 1, pp. 159–167, 2015.
  • [25] F. Russo, M. Bulzomì, E. Di Nicolò, C. Ursino, A. Figoli, “Enhanced anti-fouling behavior and performance of pes membrane by uv treatment,” Processes, vol. 9, no. 2, pp. 1–17, 2021.
  • [26] A. L. Ahmad, N. F. Shoparwe, N. H. E. Hanifa, “Equilibrium and kinetic study of bovine serum albumin (BSA) adsorption onto fabricated polyethersulfone (PES)/hydroxyapatite (HAP) adsorptive mixed matrix membrane (MMM),” Journal of Physical Science, vol. 30, no. Mmm, pp. 43–63, 2019.
  • [27] K. A. Gebru, C. Das, “Effects of solubility parameter differences among PEG, PVP and CA on the preparation of ultrafiltration membranes: Impacts of solvents and additives on morphology, permeability and fouling performances,” Chinese Journal of Chemical Engineering, vol. 25, no. 7, pp. 911–923, 2017.
  • [28] A. K. Hołda, I. F. J. Vankelecom, “Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes,” Journal of Applied Polymer Science, vol. 132, no. 27, pp. 1–17, 2015.
  • [29] A. Karimi, A. Khataee, V. Vatanpour, M. Safarpour, “The effect of different solvents on the morphology and performance of the ZIF-8 modified PVDF ultrafiltration membranes,” Separation and Purification Technology, vol. 253, no. August, p. 117548, 2020.
  • [30] Z. Sun, F. Chen, “Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc,” International Journal of Biological Macromolecules, vol. 91, pp. 143–150, 2016.
  • [31] S. Acarer, İ. Pir, M. Tüfekci, G. Türkoğlu Demirkol, N. Tüfekci, “Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranes,” Polymers, vol. 13, no. 10, 2021.
  • [32] H. Rafiei, M. Abbasian, R. Yegani, “Polyvinylidene fluoride as a neat and the synthesized novel membranes based on PVDF/polyvinyl pyrrolidone polymer grafted with TiO2 nanoparticles through RAFT method for water purification,” Iranian Polymer Journal (English Edition), vol. 30, no. 8, pp. 769–780, 2021.
  • [33] D. C. Hung, N. C. Nguyen, “Membrane processes and their potential applications for fresh water provision in Vietnam.,” Vietnam Journal of Chemistry, vol. 55, no. 5, p. 533, 2017.
  • [34] R. Kotsilkova, I. Borovanska, P. Todorov, E. Ivanov, D. Menseidov, S. Chakraborty, C. Bhattacharjee “Tensile and Surface Mechanical Properties of Polyethersulphone (PES) and Polyvinylidene Fluoride (PVDF) Membranes,” Journal of Theoretical and Applied Mechanics (Bulgaria), vol. 48, no. 3, pp. 85–99, 2018.
  • [35] N. Arahman, S. Mulyati, M. R. Lubis, F. Razi, R. Takagi, H. Matsuyama, “Modification of polyethersulfone hollow fiber membrane with different polymeric additives,” Membrane Water Treatment, vol. 7, no. 4, pp. 355–365, 2016.
  • [36] T. T. Van Tran, S. R. Kumar, C. H. Nguyen, J. W. Lee, H. A. Tsai, C. H. Hsieh, S. J. Lue, “High-permeability graphene oxide and poly(vinyl pyrrolidone) blended poly(vinylidene fluoride) membranes: Roles of additives and their cumulative effects,” Journal of Membrane Science, vol. 619, p. 118773, 2021.
Yıl 2022, Cilt: 26 Sayı: 6, 1196 - 1208, 31.12.2022
https://doi.org/10.16984/saufenbilder.1135285

Öz

Proje Numarası

FYL-2020-34069

Kaynakça

  • [1] C. Aydıner, E. C. Doğan, B. K. Mert, A. O. Narcı, E. Durna, and A. Akbacak, “Water recovery from pulp and paper mill wastewater with integrated membrane system and minimization of concentrated waste,” Sakarya University Journal of Science, vol. 21, no. 2, pp. 252–260, 2017.
  • [2] F. İlhan, “Investigation of minimization and reusability of the reject from electrodialysis processes: an example textile wastewater,” Sakarya University Journal of Science, vol. 21, no. 5, pp. 943–950, 2017.
  • [3] A. Kausar, “Phase Inversion Technique-Based Polyamide Films and Their Applications: A Comprehensive Review,” Polymer-Plastics Technology and Engineering, vol. 56, no. 13, pp. 1421–1437, Sep. 2017.
  • [4] C. Algieri, S. Chakraborty, and U. Pal, “Efficacy of Phase Inversion Technique for Polymeric Membrane Fabrication,” Journal of Phase Change Materials, vol. 1, no. 1, p. 1, 2021, [Online]. Available: https://j-pcm.org/index.php/jpcm/article/view/10
  • [5] K. P. Wai, C. H. Koo, W. C. Chong, S. O. Lai, Y. L. Pang, “Improving hydrophilicity of polyethersulfone membrane using silver nanoparticles for humic substances removal,” International Journal of Engineering, Transactions B: Applications, vol. 31, no. 8, pp. 1364–1372, 2018.
  • [6] W. Wang, L. Zhu, B. Shan, C. Xie, C. Liu, F. Cui, G. Li, “Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties,” Journal of Membrane Science, vol. 548, no. December, pp. 459–469, 2018.
  • [7] X. Dong, A. Al-Jumaily, I. C. Escobar, “Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation (NIPS) fabrication of polysulfone membranes,” Membranes, vol. 8, no. 2, 2018.
  • [8] M. Amirilargani, T. Mohammadi, “Effects of PEG on morphology and permeation properties of polyethersulfone membranes,” Separation Science and Technology, vol. 44, no. 16, pp. 3854–3875, 2009.
  • [9] A. Marjani, A. T. Nakhjiri, M. Adimi, H. F. Jirandehi, S. Shirazian, “Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment,” Scientific Reports, vol. 10, no. 1, pp. 1–11, 2020.
  • [10] P. H. Krishnamurthy, L. T. Yogarathinam, A. Gangasalam, A. F. Ismail, “Influence of copper oxide nanomaterials in a poly(ether sulfone) membrane for improved humic acid and oil–water separation,” Journal of Applied Polymer Science, vol. 133, no. 36, pp. 1–10, 2016.
  • [11] S. L. Duraikkannu, R. Castro-Muñoz, A. Figoli, “A review on phase-inversion technique-based polymer microsphere fabrication,” Colloids and Interface Science Communications, vol. 40, no. December 2020, 2021.
  • [12] A. Fahrina, T. Maimun, S. Humaira, C.M. Rosnelly, M.R. Lubis, I. B. R. Sunarya, A. Ghufran, N. Arahman, “The morphology and filtration performances of poly (ether sulfone) membrane fabricated from different polymer solution,” MATEC Web of Conferences, vol. 197, pp. 1–4, 2018.
  • [13] P. D. Amin, V. Bhanushali, S. Joshi, “Role of Polyvinlyppyrrolidone in Membrane Technologies,” International Journal of ChemTech Research, vol. 11, no. 9, pp. 247–259, 2018.
  • [14] Y. W. Guo, W. Cui, W. Xu, Y. Jiang, H. Liu, J. Xu, Z. Gao, L. Liu, “Effect of PVP hydrophilic additive on the morphology and properties of PVDF porous membranes,” Advanced Materials Research, vol. 981, pp. 891–894, 2014.
  • [15] S. Mansur, M. H. D. Othman, A. F. Ismail, M. N. Z. Abidin, N. Said, P. S. Goh, H. Hasbullah, S. H. S. A. Kadir, F. Kamal, “Study on the effect of PVP additive on the performance of PSf/PVP ultrafiltration hollow fiber membrane,” Malaysian Journal of Fundamental and Applied Sciences, vol. 14, no. 3, pp. 343–347, 2018.
  • [16] H. Mokarizadeh, A. Raisi, “Industrial wastewater treatment using PES UF membranes containing hydrophilic additives: Experimental and modeling of fouling mechanism,” Environmental Technology and Innovation, vol. 23, p. 101701, 2021.
  • [17] M. A. Tofighy, T. Mohammadi, M. H. Sadeghi, “High-flux PVDF/PVP nanocomposite ultrafiltration membrane incorporated with graphene oxide nanoribbones with improved antifouling properties,” Journal of Applied Polymer Science, vol. 138, no. 4, pp. 1–15, 2021.
  • [18] Y. Kourde - Hanafi, P. Loulergue, A. Szymczyk, B. Van der Bruggen, M. Nachtnebel, M. Rabiller-Baudry, J. L. Audic, P. Pölt, K. Baddari, “Influence of PVP content on degradation of PES/PVP membranes: Insights from characterization of membranes with controlled composition,” Journal of Membrane Science, vol. 533, no. October 2016, pp. 261–269, 2017.
  • [19] S. Arefi-Oskoui, A. Khataee, V. Vatanpour, “Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes,” Separation and Purification Technology, vol. 184, pp. 97–118, 2017.
  • [20] N. Ucar, N. Kizildag, A. Onen, I. Karacan, O. Eren, “Polyacrylonitrile-polyaniline composite nanofiber webs: Effects of solvents, redoping process and dispersion technique,” Fibers and Polymers, vol. 16, no. 10, pp. 2223–2236, 2015.
  • [21] B. Eren, E. Eren, M. Guney, Y. C. Jean, J. D. Van Horn, “Positron annihilation lifetime spectroscopy study of polyvinylpyrrolidone-added polyvinylidene fluoride membranes: Investigation of free volume and permeation relationships,” Journal of Polymer Science, vol. 58, no. 4, pp. 589–598, 2020.
  • [22] L. F. Greenlee, N. S. Rentz, “Influence of nanoparticle processing and additives on PES casting solution viscosity and cast membrane characteristics,” Polymer, vol. 103, pp. 498–508, 2016.
  • [23] T. Anokhina, A. Raeva, S. Makaev, I. Borisov, V. Vasilevsky, and A. Volkov, “Express method of preparation of hollow fiber membrane samples for spinning solution optimization: Polysulfone as example,” Membranes, vol. 11, no. 6, 2021.
  • [24] D. S. Lakshmi, T. Cundari, E. Furia, A. Tagarelli, G. Fiorani, M. Carraro, A. Figoli, “Preparation of polymeric membranes and microcapsules using an ionic liquid as morphology control additive,” Macromolecular Symposia, vol. 357, no. 1, pp. 159–167, 2015.
  • [25] F. Russo, M. Bulzomì, E. Di Nicolò, C. Ursino, A. Figoli, “Enhanced anti-fouling behavior and performance of pes membrane by uv treatment,” Processes, vol. 9, no. 2, pp. 1–17, 2021.
  • [26] A. L. Ahmad, N. F. Shoparwe, N. H. E. Hanifa, “Equilibrium and kinetic study of bovine serum albumin (BSA) adsorption onto fabricated polyethersulfone (PES)/hydroxyapatite (HAP) adsorptive mixed matrix membrane (MMM),” Journal of Physical Science, vol. 30, no. Mmm, pp. 43–63, 2019.
  • [27] K. A. Gebru, C. Das, “Effects of solubility parameter differences among PEG, PVP and CA on the preparation of ultrafiltration membranes: Impacts of solvents and additives on morphology, permeability and fouling performances,” Chinese Journal of Chemical Engineering, vol. 25, no. 7, pp. 911–923, 2017.
  • [28] A. K. Hołda, I. F. J. Vankelecom, “Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes,” Journal of Applied Polymer Science, vol. 132, no. 27, pp. 1–17, 2015.
  • [29] A. Karimi, A. Khataee, V. Vatanpour, M. Safarpour, “The effect of different solvents on the morphology and performance of the ZIF-8 modified PVDF ultrafiltration membranes,” Separation and Purification Technology, vol. 253, no. August, p. 117548, 2020.
  • [30] Z. Sun, F. Chen, “Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc,” International Journal of Biological Macromolecules, vol. 91, pp. 143–150, 2016.
  • [31] S. Acarer, İ. Pir, M. Tüfekci, G. Türkoğlu Demirkol, N. Tüfekci, “Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranes,” Polymers, vol. 13, no. 10, 2021.
  • [32] H. Rafiei, M. Abbasian, R. Yegani, “Polyvinylidene fluoride as a neat and the synthesized novel membranes based on PVDF/polyvinyl pyrrolidone polymer grafted with TiO2 nanoparticles through RAFT method for water purification,” Iranian Polymer Journal (English Edition), vol. 30, no. 8, pp. 769–780, 2021.
  • [33] D. C. Hung, N. C. Nguyen, “Membrane processes and their potential applications for fresh water provision in Vietnam.,” Vietnam Journal of Chemistry, vol. 55, no. 5, p. 533, 2017.
  • [34] R. Kotsilkova, I. Borovanska, P. Todorov, E. Ivanov, D. Menseidov, S. Chakraborty, C. Bhattacharjee “Tensile and Surface Mechanical Properties of Polyethersulphone (PES) and Polyvinylidene Fluoride (PVDF) Membranes,” Journal of Theoretical and Applied Mechanics (Bulgaria), vol. 48, no. 3, pp. 85–99, 2018.
  • [35] N. Arahman, S. Mulyati, M. R. Lubis, F. Razi, R. Takagi, H. Matsuyama, “Modification of polyethersulfone hollow fiber membrane with different polymeric additives,” Membrane Water Treatment, vol. 7, no. 4, pp. 355–365, 2016.
  • [36] T. T. Van Tran, S. R. Kumar, C. H. Nguyen, J. W. Lee, H. A. Tsai, C. H. Hsieh, S. J. Lue, “High-permeability graphene oxide and poly(vinyl pyrrolidone) blended poly(vinylidene fluoride) membranes: Roles of additives and their cumulative effects,” Journal of Membrane Science, vol. 619, p. 118773, 2021.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Seren Acarer 0000-0001-6733-2067

Proje Numarası FYL-2020-34069
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 24 Haziran 2022
Kabul Tarihi 11 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 6

Kaynak Göster

APA Acarer, S. (2022). Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane. Sakarya University Journal of Science, 26(6), 1196-1208. https://doi.org/10.16984/saufenbilder.1135285
AMA Acarer S. Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane. SAUJS. Aralık 2022;26(6):1196-1208. doi:10.16984/saufenbilder.1135285
Chicago Acarer, Seren. “Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane”. Sakarya University Journal of Science 26, sy. 6 (Aralık 2022): 1196-1208. https://doi.org/10.16984/saufenbilder.1135285.
EndNote Acarer S (01 Aralık 2022) Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane. Sakarya University Journal of Science 26 6 1196–1208.
IEEE S. Acarer, “Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane”, SAUJS, c. 26, sy. 6, ss. 1196–1208, 2022, doi: 10.16984/saufenbilder.1135285.
ISNAD Acarer, Seren. “Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane”. Sakarya University Journal of Science 26/6 (Aralık 2022), 1196-1208. https://doi.org/10.16984/saufenbilder.1135285.
JAMA Acarer S. Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane. SAUJS. 2022;26:1196–1208.
MLA Acarer, Seren. “Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane”. Sakarya University Journal of Science, c. 26, sy. 6, 2022, ss. 1196-08, doi:10.16984/saufenbilder.1135285.
Vancouver Acarer S. Effect of Different Solvents, Pore-Forming Agent and Solubility Parameter Differences on the Properties of PES Ultrafiltration Membrane. SAUJS. 2022;26(6):1196-208.

Cited By













30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.