Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 27 Sayı: 1, 159 - 167, 28.02.2023
https://doi.org/10.16984/saufenbilder.1127260

Öz

Nükleer teknolojide uzun zamandır gamaların zırhlanmasına yönelik yaygın olarak kullanılan kurşunun toksisitesi ve çevreye olumsuz etkileri göz önünde bulundurularak, son zamanlarda gama radyasyonunun zırhlanmasında kurşuna alternatif olarak kullanılabilecek çeşitli kalkan malzemelerinin geliştirilmesine ilişkin çalışmalara yönelinmiştir. Bu araştırmada, manyetit ve bor karbür içeren kompozit bir malzeme (epoksi/manyetit/bor karbür) ile nükleer uygulamalarda üzerinde önemle durulan gama transmisyon tekniği kullanılarak gama ışını zırhlamasına yönelik olarak çalışılmıştır. Bu teknik için ele alınan radyasyon kaynakları, nükleer teknolojide önemli olan Am-241, Cs-137, Na-22 ve Co-60 radyoizotoplarıdır. Söz konusu kompozit malzeme ile 59.5, 511, 661.6, 1173.2, 1274.5 ve 1332.5 keV enerjili gamaların etkileşmeleri Monte Carlo yöntemi ile ayrı ayrı incelenmiş, malzemenin bu enerjilerdeki radyasyonları zırhlama kabiliyeti araştırılmıştır. İncelenen kompozitin radyasyon zırhlama parametreleri arasında olan lineer zayıflama katsayısı, ortalama serbest yol, yarıdeğer kalınlığı ve ondabir değer kalınlık değerlerinin belirlenmesi amacıyla yazılan Monte Carlo kodunda yayınlandıkları noktadan itibaren sistemi terk edene kadar (sistemden kaçma veya soğurulma yoluyla) gama ışınları, tek tek, tesir kesitleri kullanılarak ortamla etkileşme olasılıkları belirlenerek takip edilmiştir. Modelleme sonuçları kullanılarak hesaplanan zırhlama parametreleri, XCOM yazılımından elde edilen veriler kullanılarak da hesaplanmış, sonuçların birbirleriyle uyumlu olduğu görülmüştür. Diğer taraftan, ele alınan kompozitin çalışılan enerji aralığında nükleer uygulamalar için alternatif zırh malzemesi olarak kullanılabilirliğinin daha iyi değerlendirilebilmesi için çeşitli malzemelere ait, literatürde mevcut olan zırhlama parametreleri ile karşılaştırma yapılmıştır.

Kaynakça

  • [1] J. K. Chahal, “Dependence of Resolution and Efficiency of NaI(Tl) on Various Parameters,” M.S. Dissertation, Thapar Institute of Engineering and Technology, Punjab, India, 2020.
  • [2] N. J. AbuAlRoos, M. N. Azman, N. A. B. Amin, R. Zainon, “ Tungsten-based Material as Promising New Lead-free Gamma Radiation Shielding Material in Nuclear Medicine,” Physica Medica, vol. 78, pp. 48-57, 2020.
  • [3] D. R. McAlister, “Gamma Ray Attenuation Properties of Common Shielding Materials,” Ph.D. Dissertation, University Lane Lisle, IL, USA, 2018.
  • [4] N. J. Abualroos, R. Zainon, “Fabrication of New Non-hazardous Tungsten Carbide Epoxy Resin Bricks for Low Energy Gamma Shielding in Nuclear Medicine,” Journal of Physics Communications, vol. 5, no. 9, p. 095014, 2021.
  • [5] B. Aygün, E. Şakar, V. P. Singh, M. I. Sayyed, T. Korkut, A. Karabulut, “Experimental and Monte Carlo Simulation Study on Potential New Composite Materials to Moderate Neutron-gamma Radiation,” Progress in Nuclear Energy, vol. 130, p. 103538, 2020.
  • [6] F. Akman, M. R. Kaçal, N. Almousa, M. I. Sayyed, H. Polat, “Gamma-ray Attenuation Parameters for Polymer Composites Reinforced with BaTiO3 and CaWO4 Compounds,” Progress in Nuclear Energy, vol. 121, p. 103257, 2020.
  • [7] B. Ahmed, G. B. Shah, A. H. Malik, Aurangzeb, M. Rizwan, “Gamma-ray Shielding Characteristics of Flexible Silicone Tungsten Composites,” Applied Radiation and Isotopes, vol. 155, p. 108901, 2020.
  • [8] M. C. M. Higgins, N. A. Radcliffe, M. Toro-Gonzalez, J. V. Rojas, “Gamma ray Attenuation of Hafnium dioxide‑ and Tungsten trioxide‑epoxy resin Composites,” Journal of Radioanalytical and Nuclear Chemistry, vol. 322, pp. 707–716, 2019.
  • [9] T. Özdemir, A. Güngör, I. K. Akbay, H. Uzun, Y. Pabucçuoglu, “Nano lead oxide and Epdm Composite for Development of Polymer Based Radiation Shielding Material: Gamma Irradiation and Attenuation Tests,” Radiation Physics and Chemistry, vol. 144, pp. 248-255, 2018.
  • [10] N. I. Cherkashina, V. I. Pavlenko, A. V. Noskov, “Radiation Shielding Properties of Polyimide Composite Materials,” Radiation Physics and Chemistry, vol. 159, pp. 111-117, 2019.
  • [11] H. Alavian, H. Tavakoli-Anbaran, “Study on Gamma Shielding Polymer Composites Reinforced with Different Sizes and Proportions of Tungsten Particles Using MCNP code,” Progress in Nuclear Energy, vol. 115, pp. 91-98, 2019.
  • [12] V. I. Pavlenko, N. I. Cherkashina, R. N. Yastrebinsky, “Synthesis and Radiation Shielding Properties of Polyimide/Bi2O3 Composites,” Heliyon, vol. 5, p. e01703, 2019.
  • [13] S. Atef, D. E. El-Nashar, A. H. Ashour, S. El-Fiki, S. U. El-Kameesy, M. Medhat, “Effect of Gamma Irradiation and Lead Content on the Physical and Shielding Properties of PVC/NBR Polymer Blends,” Polymer Bulletin, vol. 77, pp. 5423–5438, 2020.
  • [14] A. Sharma, B. Singh, B. S. Sandhu, “Investigation of Photon Interaction Parameters of Polymeric Materials Using Monte Carlo Simulation,” Chinese Journal of Physics, vol. 60, pp. 709-719, 2019.
  • [15] C. Eke, “A Study on the Gamma-ray Attenuation Parameters of Some Commercial Salt Samples,” Sakarya University Journal of Science, vol. 24, pp. 412-423, 2020.
  • [16] B. Kanberoğlu, A. Y. Teşneli, “Shielding Performance of Composite Materials Used in Air Vehicles,” Sakarya University Journal of Science, vol. 25, pp. 554–562, 2021.
  • [17] U. Akar Tarım, O. Gürler, “Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses,” Sakarya University Journal of Science, vol. 22, pp. 1848-1852, 2018.
  • [18] T. F. Çavuş, E. Yanıkoğlu, “Karmaşık Sistemlerin Monte Carlo Yöntemi ile Güvenilirlik Analizi,” Sakarya University Journal of Science, vol. 7, pp. 99-102, 2003. (In Turkish)
  • [19] U. Akar Tarım, “Monte Carlo Simulation of Multiple Scattering of Medium-energy Gamma Rays,” Ph.D. Dissertation, Bursa Uludag University, Bursa, Turkey, 2014.
  • [20] A. T. Gheith, M. A. El-Sarraf, I. E. Hasan, N. L. Helal, R. A. Rizk, A. A. El-Sawy, A. El-Sayed Abdo, “Assessment of a Polymeric Composite as a Radiation Attenuator and a Restoration Mortar for Cracking in Biological Shields,” Nuclear Physics and Atomic Energy, vol. 21, pp. 361-368, 2020.
  • [21] A. Bijanu, R. Arya, V. Agrawal, A. S. Tomar, V. S. Gowri, S. K. Sanghi, D. Mishra, S. T. Salammal, “Metal‑polymer Composites for Radiation Protection: A Review,” Journal of Polymer Research, vol. 28, p. 392, 2021.
  • [22] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, K. Olsen, “XCOM: photoncrosssectionsdatabase, NIST standard reference database 8 (XGAM)” February, 18, 2022 [Online]. Available : http://www.nist.gov/pml/data/xcom/index.cfm/
  • [23] M. D. M. Ali, M. E. M. Eisa, J. A. Mars, K. E. M. Mohamadain, A. E. El faki, A. Hamed, K. J. Cloete, A. A. Beineen, “Study of gamma rays shielding parameters of some building materials used in Sudan,” International Journal of Radiation Research, vol. 19, pp. 191-196, 2021.
  • [24] N. J. AbuAlRoos, M. N. Azman, N. A. B. Amin, R. Zainon, “Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine,” Physica Medica, vol. 78, pp. 48-57, 2020.
  • [25] O. Gurler, U. Akar Tarim, “Potential Use of Concretes for Gamma-Ray Shielding,” Fresenius Environmental Bulletin, vol. 28, pp. 10029-10034, 2019.
  • [26] A. M. El-Khatib, M. I. Abbas, M. A. Elzaher, M. S. Badawi, M. T. Alabsy, G. A. Alharshan, D. A. Aloraini, “Gamma Attenuation Coefficients of Nano Cadmium Oxide/High density Polyethylene Composites,” Scientific Reports, vol. 9, p. 16012, 2019.

Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays

Yıl 2023, Cilt: 27 Sayı: 1, 159 - 167, 28.02.2023
https://doi.org/10.16984/saufenbilder.1127260

Öz

Considering the negative effects on the environment and toxicity of lead, which has been widely used for gamma shielding for a long time in nuclear technology, studies have been focused on the development of various materials that can be used as an alternative to lead in gamma radiation shielding. In this research, a composite material containing magnetite and boron carbide (epoxy/magnetite/boron carbide) and gamma transmission technique which is emphasized in nuclear applications have been used for the study of gamma ray shielding. The radiation sources considered for this technique are the radioisotopes Am-241, Cs-137, Na-22 and Co-60, which are important in nuclear technology. The interactions between the composite material and gammas with 59.5, 511, 661.6, 1173.2, 1274.5 and 1332.5 keV energies were investigated separately by the Monte Carlo method, and the ability of the material to shield the radiations at these energies was investigated. Gamma rays, one by one, followed by using cross sections and determining the probability of interaction with the composite from the point they are emitted until they leave the system (through escaping or absorption from the system) in the Monte Carlo code, which is written to determine the linear attenuation coefficient, mean free path, half value layer and tenth value layer, among the radiation shielding parameters of the composite under investigation. The shielding parameters calculated using the simulation results were also calculated using the data obtained from the XCOM software, and the results were found to be compatible with each other. On the other hand, in order to better evaluate the usability of the composite as an alternative shielding material for nuclear applications in the studied energy range, a comparison was made with the shielding parameters of various materials available in the literature.

Kaynakça

  • [1] J. K. Chahal, “Dependence of Resolution and Efficiency of NaI(Tl) on Various Parameters,” M.S. Dissertation, Thapar Institute of Engineering and Technology, Punjab, India, 2020.
  • [2] N. J. AbuAlRoos, M. N. Azman, N. A. B. Amin, R. Zainon, “ Tungsten-based Material as Promising New Lead-free Gamma Radiation Shielding Material in Nuclear Medicine,” Physica Medica, vol. 78, pp. 48-57, 2020.
  • [3] D. R. McAlister, “Gamma Ray Attenuation Properties of Common Shielding Materials,” Ph.D. Dissertation, University Lane Lisle, IL, USA, 2018.
  • [4] N. J. Abualroos, R. Zainon, “Fabrication of New Non-hazardous Tungsten Carbide Epoxy Resin Bricks for Low Energy Gamma Shielding in Nuclear Medicine,” Journal of Physics Communications, vol. 5, no. 9, p. 095014, 2021.
  • [5] B. Aygün, E. Şakar, V. P. Singh, M. I. Sayyed, T. Korkut, A. Karabulut, “Experimental and Monte Carlo Simulation Study on Potential New Composite Materials to Moderate Neutron-gamma Radiation,” Progress in Nuclear Energy, vol. 130, p. 103538, 2020.
  • [6] F. Akman, M. R. Kaçal, N. Almousa, M. I. Sayyed, H. Polat, “Gamma-ray Attenuation Parameters for Polymer Composites Reinforced with BaTiO3 and CaWO4 Compounds,” Progress in Nuclear Energy, vol. 121, p. 103257, 2020.
  • [7] B. Ahmed, G. B. Shah, A. H. Malik, Aurangzeb, M. Rizwan, “Gamma-ray Shielding Characteristics of Flexible Silicone Tungsten Composites,” Applied Radiation and Isotopes, vol. 155, p. 108901, 2020.
  • [8] M. C. M. Higgins, N. A. Radcliffe, M. Toro-Gonzalez, J. V. Rojas, “Gamma ray Attenuation of Hafnium dioxide‑ and Tungsten trioxide‑epoxy resin Composites,” Journal of Radioanalytical and Nuclear Chemistry, vol. 322, pp. 707–716, 2019.
  • [9] T. Özdemir, A. Güngör, I. K. Akbay, H. Uzun, Y. Pabucçuoglu, “Nano lead oxide and Epdm Composite for Development of Polymer Based Radiation Shielding Material: Gamma Irradiation and Attenuation Tests,” Radiation Physics and Chemistry, vol. 144, pp. 248-255, 2018.
  • [10] N. I. Cherkashina, V. I. Pavlenko, A. V. Noskov, “Radiation Shielding Properties of Polyimide Composite Materials,” Radiation Physics and Chemistry, vol. 159, pp. 111-117, 2019.
  • [11] H. Alavian, H. Tavakoli-Anbaran, “Study on Gamma Shielding Polymer Composites Reinforced with Different Sizes and Proportions of Tungsten Particles Using MCNP code,” Progress in Nuclear Energy, vol. 115, pp. 91-98, 2019.
  • [12] V. I. Pavlenko, N. I. Cherkashina, R. N. Yastrebinsky, “Synthesis and Radiation Shielding Properties of Polyimide/Bi2O3 Composites,” Heliyon, vol. 5, p. e01703, 2019.
  • [13] S. Atef, D. E. El-Nashar, A. H. Ashour, S. El-Fiki, S. U. El-Kameesy, M. Medhat, “Effect of Gamma Irradiation and Lead Content on the Physical and Shielding Properties of PVC/NBR Polymer Blends,” Polymer Bulletin, vol. 77, pp. 5423–5438, 2020.
  • [14] A. Sharma, B. Singh, B. S. Sandhu, “Investigation of Photon Interaction Parameters of Polymeric Materials Using Monte Carlo Simulation,” Chinese Journal of Physics, vol. 60, pp. 709-719, 2019.
  • [15] C. Eke, “A Study on the Gamma-ray Attenuation Parameters of Some Commercial Salt Samples,” Sakarya University Journal of Science, vol. 24, pp. 412-423, 2020.
  • [16] B. Kanberoğlu, A. Y. Teşneli, “Shielding Performance of Composite Materials Used in Air Vehicles,” Sakarya University Journal of Science, vol. 25, pp. 554–562, 2021.
  • [17] U. Akar Tarım, O. Gürler, “Application of Monte Carlo Method for Gamma ray Attenuation Properties of Lead Zinc Borate Glasses,” Sakarya University Journal of Science, vol. 22, pp. 1848-1852, 2018.
  • [18] T. F. Çavuş, E. Yanıkoğlu, “Karmaşık Sistemlerin Monte Carlo Yöntemi ile Güvenilirlik Analizi,” Sakarya University Journal of Science, vol. 7, pp. 99-102, 2003. (In Turkish)
  • [19] U. Akar Tarım, “Monte Carlo Simulation of Multiple Scattering of Medium-energy Gamma Rays,” Ph.D. Dissertation, Bursa Uludag University, Bursa, Turkey, 2014.
  • [20] A. T. Gheith, M. A. El-Sarraf, I. E. Hasan, N. L. Helal, R. A. Rizk, A. A. El-Sawy, A. El-Sayed Abdo, “Assessment of a Polymeric Composite as a Radiation Attenuator and a Restoration Mortar for Cracking in Biological Shields,” Nuclear Physics and Atomic Energy, vol. 21, pp. 361-368, 2020.
  • [21] A. Bijanu, R. Arya, V. Agrawal, A. S. Tomar, V. S. Gowri, S. K. Sanghi, D. Mishra, S. T. Salammal, “Metal‑polymer Composites for Radiation Protection: A Review,” Journal of Polymer Research, vol. 28, p. 392, 2021.
  • [22] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, K. Olsen, “XCOM: photoncrosssectionsdatabase, NIST standard reference database 8 (XGAM)” February, 18, 2022 [Online]. Available : http://www.nist.gov/pml/data/xcom/index.cfm/
  • [23] M. D. M. Ali, M. E. M. Eisa, J. A. Mars, K. E. M. Mohamadain, A. E. El faki, A. Hamed, K. J. Cloete, A. A. Beineen, “Study of gamma rays shielding parameters of some building materials used in Sudan,” International Journal of Radiation Research, vol. 19, pp. 191-196, 2021.
  • [24] N. J. AbuAlRoos, M. N. Azman, N. A. B. Amin, R. Zainon, “Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine,” Physica Medica, vol. 78, pp. 48-57, 2020.
  • [25] O. Gurler, U. Akar Tarim, “Potential Use of Concretes for Gamma-Ray Shielding,” Fresenius Environmental Bulletin, vol. 28, pp. 10029-10034, 2019.
  • [26] A. M. El-Khatib, M. I. Abbas, M. A. Elzaher, M. S. Badawi, M. T. Alabsy, G. A. Alharshan, D. A. Aloraini, “Gamma Attenuation Coefficients of Nano Cadmium Oxide/High density Polyethylene Composites,” Scientific Reports, vol. 9, p. 16012, 2019.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Araştırma Makalesi
Yazarlar

Urkiye Akar Tarım 0000-0002-5494-5128

Yayımlanma Tarihi 28 Şubat 2023
Gönderilme Tarihi 7 Haziran 2022
Kabul Tarihi 14 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 1

Kaynak Göster

APA Akar Tarım, U. (2023). Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays. Sakarya University Journal of Science, 27(1), 159-167. https://doi.org/10.16984/saufenbilder.1127260
AMA Akar Tarım U. Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays. SAUJS. Şubat 2023;27(1):159-167. doi:10.16984/saufenbilder.1127260
Chicago Akar Tarım, Urkiye. “Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays”. Sakarya University Journal of Science 27, sy. 1 (Şubat 2023): 159-67. https://doi.org/10.16984/saufenbilder.1127260.
EndNote Akar Tarım U (01 Şubat 2023) Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays. Sakarya University Journal of Science 27 1 159–167.
IEEE U. Akar Tarım, “Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays”, SAUJS, c. 27, sy. 1, ss. 159–167, 2023, doi: 10.16984/saufenbilder.1127260.
ISNAD Akar Tarım, Urkiye. “Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays”. Sakarya University Journal of Science 27/1 (Şubat 2023), 159-167. https://doi.org/10.16984/saufenbilder.1127260.
JAMA Akar Tarım U. Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays. SAUJS. 2023;27:159–167.
MLA Akar Tarım, Urkiye. “Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays”. Sakarya University Journal of Science, c. 27, sy. 1, 2023, ss. 159-67, doi:10.16984/saufenbilder.1127260.
Vancouver Akar Tarım U. Assessment of the Usability of a Composite Containing Boron Carbide for Shielding the Gamma Rays. SAUJS. 2023;27(1):159-67.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.