Araştırma Makalesi
BibTex RIS Kaynak Göster

Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals

Yıl 2023, Cilt: 27 Sayı: 2, 419 - 427, 30.04.2023
https://doi.org/10.16984/saufenbilder.1163187

Öz

Lignocellulosic biomass is accepted to be one of the best sustainable alternatives for overcoming fossil fuel dependence and to reduce environmental pollution. Intensive research studies have been carried out on conversion of this big potential source via chemical and biochemical processes to miscellaneous chemicals. According to one of the present methods of chemical conversion, cellulose and hemicellulose parts of the plant biomass can be converted to platform chemicals by hydrolysis, dehydration and rehydration reactions in the presence of acidic medium. In this study, the efficient conversion conditions of the Artichoke (Cynara Scolymus L.) leaves and stalks to the valuable chemicals (formic acid, acetic acid and 5-hydroxymetilfurfural) were investigated using acid (HCl, HNO3 and H2SO4) catalyzed hydrothermal reaction. Experiments were performed in the temperature range of 150°C - 300°C and at the pH values 2.0 - 3.0 with a reaction time of 1 hour. Evolution of liquid parts and their variations with respect to reaction parameters were determined using HPLC via related analysis

Destekleyen Kurum

Ege University Scientific Research Projects Coordination (BAP)

Proje Numarası

No: 16 MUH 040

Teşekkür

The financial support for this work provided by the Ege University Scientific Research Projects Coordination (BAP) in the form of research project No: 16 MUH 040.

Kaynakça

  • [1] S. Takkellapati,T. Li, M. A. Gonzalez, “An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery,” Clean Technologies and Environmental Policy, vol. 20, no.7, pp. 1615–1630, 2018.
  • [2] A. Kruse, N. Dahmen, “Water-A magic solvent for biomass conversion,” Journal of Supercritical Fluids, vol. 96, pp. 36-45, 2015.
  • [3] T. M. Yeh, J. G. Dickinson, A. Franck, S. Linic, L. T. Thompson Jr, P. E. Savage, “Hydrothermal catalytic production of fuels and chemicals from aquatic biomass,” vol.88, no.1, pp.13-24, 2012.
  • [4] A. Yüksel Özşen, “Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions,” Frontiers in Chemistry, vol. 8, no.24, pp. 1-13, 2020.
  • [5] Y. H. Chan, S. Yusup, A. T. Quitain, Y. Uemura, M. Sasaki, “Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction,” Journal of Supercritical Fluids, vol. 95, pp. 407–412, 2014.
  • [6] N. Shimizu, B. Zeng, “Hydrothermal liquefaction of wood chips under supercritical and subcritical water reaction conditions,” SN Applied Sciences, vol. 577, no.3, pp. 6-15, 2020.
  • [7] A. Kruse, A. Gawlik, “Biomass conversion in water at 330–410 ℃ and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways,” Industrial and Engineering Chemistry Research, vol. 42, no.2, pp. 267-279, 2003.
  • [8] L. M. Cheng, X. P. Ye, R. H. He, S. Liu, “Investigationof rapid conversion of switchgrass in subcritical water,” Fuel Processing Technology, vol. 90, no.2, pp. 301–311, 2009.
  • [9] G. T. Jeong, “Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction,” Biomass and Bioenergy, vol. 74, pp. 113-121, 2015.
  • [10] D. A. Cantero, T. Sánchez Tapia, M. D. Bermejo, M. J. Cocero, “Pressure and temperature effect on cellulose hydrolysis in pressurized water,” Journal of Chemical Engineering, vol. 276, pp. 145–154, 2015.
  • [11] T. Saito, M. Sasaki, H. Kawanabe, Y. Yoshino, M. Goto, “Subcritical water reaction behavior of D-glucose as a model compound for biomass using two different continuous-flow reactor configurations,” Chemical Engineering Technology, vol. 32,pp. 527–533, 2009.
  • [12] P. T. Williams, J. Onwudili, “Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste,” Energy Fuels, vol 20, pp. 1259–1265, 2006.
  • [13] FAOSTAT (Food and Agriculture Organization Corporate Statistical Database), 2016.
  • [14] H. K. Goering, P. J. Van Soest, Forage fiber analyses, Agriculture Handbook, US Government Printing Office, Washington, D.C., 1970, pp. 829-835.
  • [15] D. Selvi Gökkaya, G. Akgül, M. Sağlam, M. Yüksel, L. Ballice, “Supercritical conversion of wastes from wine industry: Effects of concentration, temperature and group 1A carbonates” The Journal of Supercritical Fluids, vol. 176, pp.105359, 2021.
  • [16] A. Kruse, N. Dahmen, “Hydrothermal biomass conversion: Quo vadis?,” Journal of Supercritical Fluids, vol.134, no. SI, pp. 114-123, 2018.
  • [17] C. M. Martínez, D. A. Cantero, M. D. Bermejo, M. J. Cocero, “Hydrolysis of cellulose in supercritical water: reagent concentration as a selectivity factor,” Cellulose, vol. 22, pp. 2231–2243, 2015.
  • [18] F. Peng, N. Jia, J. Bian, P. Peng, R. C. Sun, S. J. Liu, “Isolation and fractionation of hemicelluloses from Salix Psammophila,” Cellulose Chem. Technology, vol. 46, pp. 177-184, 2012.
Yıl 2023, Cilt: 27 Sayı: 2, 419 - 427, 30.04.2023
https://doi.org/10.16984/saufenbilder.1163187

Öz

Proje Numarası

No: 16 MUH 040

Kaynakça

  • [1] S. Takkellapati,T. Li, M. A. Gonzalez, “An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery,” Clean Technologies and Environmental Policy, vol. 20, no.7, pp. 1615–1630, 2018.
  • [2] A. Kruse, N. Dahmen, “Water-A magic solvent for biomass conversion,” Journal of Supercritical Fluids, vol. 96, pp. 36-45, 2015.
  • [3] T. M. Yeh, J. G. Dickinson, A. Franck, S. Linic, L. T. Thompson Jr, P. E. Savage, “Hydrothermal catalytic production of fuels and chemicals from aquatic biomass,” vol.88, no.1, pp.13-24, 2012.
  • [4] A. Yüksel Özşen, “Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions,” Frontiers in Chemistry, vol. 8, no.24, pp. 1-13, 2020.
  • [5] Y. H. Chan, S. Yusup, A. T. Quitain, Y. Uemura, M. Sasaki, “Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction,” Journal of Supercritical Fluids, vol. 95, pp. 407–412, 2014.
  • [6] N. Shimizu, B. Zeng, “Hydrothermal liquefaction of wood chips under supercritical and subcritical water reaction conditions,” SN Applied Sciences, vol. 577, no.3, pp. 6-15, 2020.
  • [7] A. Kruse, A. Gawlik, “Biomass conversion in water at 330–410 ℃ and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways,” Industrial and Engineering Chemistry Research, vol. 42, no.2, pp. 267-279, 2003.
  • [8] L. M. Cheng, X. P. Ye, R. H. He, S. Liu, “Investigationof rapid conversion of switchgrass in subcritical water,” Fuel Processing Technology, vol. 90, no.2, pp. 301–311, 2009.
  • [9] G. T. Jeong, “Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction,” Biomass and Bioenergy, vol. 74, pp. 113-121, 2015.
  • [10] D. A. Cantero, T. Sánchez Tapia, M. D. Bermejo, M. J. Cocero, “Pressure and temperature effect on cellulose hydrolysis in pressurized water,” Journal of Chemical Engineering, vol. 276, pp. 145–154, 2015.
  • [11] T. Saito, M. Sasaki, H. Kawanabe, Y. Yoshino, M. Goto, “Subcritical water reaction behavior of D-glucose as a model compound for biomass using two different continuous-flow reactor configurations,” Chemical Engineering Technology, vol. 32,pp. 527–533, 2009.
  • [12] P. T. Williams, J. Onwudili, “Subcritical and supercritical water gasification of cellulose, starch, glucose, and biomass waste,” Energy Fuels, vol 20, pp. 1259–1265, 2006.
  • [13] FAOSTAT (Food and Agriculture Organization Corporate Statistical Database), 2016.
  • [14] H. K. Goering, P. J. Van Soest, Forage fiber analyses, Agriculture Handbook, US Government Printing Office, Washington, D.C., 1970, pp. 829-835.
  • [15] D. Selvi Gökkaya, G. Akgül, M. Sağlam, M. Yüksel, L. Ballice, “Supercritical conversion of wastes from wine industry: Effects of concentration, temperature and group 1A carbonates” The Journal of Supercritical Fluids, vol. 176, pp.105359, 2021.
  • [16] A. Kruse, N. Dahmen, “Hydrothermal biomass conversion: Quo vadis?,” Journal of Supercritical Fluids, vol.134, no. SI, pp. 114-123, 2018.
  • [17] C. M. Martínez, D. A. Cantero, M. D. Bermejo, M. J. Cocero, “Hydrolysis of cellulose in supercritical water: reagent concentration as a selectivity factor,” Cellulose, vol. 22, pp. 2231–2243, 2015.
  • [18] F. Peng, N. Jia, J. Bian, P. Peng, R. C. Sun, S. J. Liu, “Isolation and fractionation of hemicelluloses from Salix Psammophila,” Cellulose Chem. Technology, vol. 46, pp. 177-184, 2012.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Dilek Selvi Gökkaya 0000-0002-3501-562X

Mehmet Sağlam 0000-0003-1784-4472

Mithat Yüksel 0000-0002-6287-3566

Levent Ballice 0000-0002-3137-1352

Proje Numarası No: 16 MUH 040
Yayımlanma Tarihi 30 Nisan 2023
Gönderilme Tarihi 17 Ağustos 2022
Kabul Tarihi 2 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 2

Kaynak Göster

APA Selvi Gökkaya, D., Sağlam, M., Yüksel, M., Ballice, L. (2023). Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals. Sakarya University Journal of Science, 27(2), 419-427. https://doi.org/10.16984/saufenbilder.1163187
AMA Selvi Gökkaya D, Sağlam M, Yüksel M, Ballice L. Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals. SAUJS. Nisan 2023;27(2):419-427. doi:10.16984/saufenbilder.1163187
Chicago Selvi Gökkaya, Dilek, Mehmet Sağlam, Mithat Yüksel, ve Levent Ballice. “Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals”. Sakarya University Journal of Science 27, sy. 2 (Nisan 2023): 419-27. https://doi.org/10.16984/saufenbilder.1163187.
EndNote Selvi Gökkaya D, Sağlam M, Yüksel M, Ballice L (01 Nisan 2023) Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals. Sakarya University Journal of Science 27 2 419–427.
IEEE D. Selvi Gökkaya, M. Sağlam, M. Yüksel, ve L. Ballice, “Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals”, SAUJS, c. 27, sy. 2, ss. 419–427, 2023, doi: 10.16984/saufenbilder.1163187.
ISNAD Selvi Gökkaya, Dilek vd. “Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals”. Sakarya University Journal of Science 27/2 (Nisan 2023), 419-427. https://doi.org/10.16984/saufenbilder.1163187.
JAMA Selvi Gökkaya D, Sağlam M, Yüksel M, Ballice L. Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals. SAUJS. 2023;27:419–427.
MLA Selvi Gökkaya, Dilek vd. “Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals”. Sakarya University Journal of Science, c. 27, sy. 2, 2023, ss. 419-27, doi:10.16984/saufenbilder.1163187.
Vancouver Selvi Gökkaya D, Sağlam M, Yüksel M, Ballice L. Catalytic Hydrothermal Liquefaction of Artichoke Residues (Cynara Scolymus L.) to Valuable Chemicals. SAUJS. 2023;27(2):419-27.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.