Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 27 Sayı: 3, 580 - 589, 30.06.2023
https://doi.org/10.16984/saufenbilder.1152986

Öz

Kaynakça

  • M. Büyükyıldız, M. Kurudirek, M. Ekici, O. İçelli, Y. Karabul, “Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma ray sources”, Progress in Nuclear Energy, vol. 100, pp 245-254,2017.
  • H.C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, The Journal of Physical Chemistry B ,vol. 110, pp 8535-8539, 2006.
  • M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, J. Judek, Graphene-based plastic absorber for total sub-terahertz radiation shielding, Nanoscale 10 (2018) 13426-13431.
  • J. Viegas, L. A. Silva, A. M. Batista, C. A. Furtado, J. P. Nascimento, L. O. Faria, "Increased X-ray attenuation efficiency of graphene-based nanocomposite", Industrial & Engineering Chemistry Research, vol. 56 pp 11782-11790,2017.
  • S. A. Hashemi, S. M. Mousavi, R. Faghihi, M. Arjmand, S. Sina, A. M. Amani, "Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding", Radiation Physics and Chemistry, vol.146 , pp 77-85, 2018.
  • A. K. Singh, A.N. Yadav, A. Srivastava, K. K. Haldar, M. Tomar, A.V. Alaferdov, S. A. Moshkalev, V. Gupta, K. Singh, "CdSe/V2O5 core/shell quantum dots decorated reduced graphene oxide nanocomposite for high-performance electromagnetic interference shielding application", Nanotechnology, vol 30, pp 505-704,2019.
  • A. Ansón-Casaos, J. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, M. Martínez, "The effect of gamma-irradiation on few-layered graphene materials", Applied Surface Science, vol 301, pp. 264-272,2014.
  • K. W. Fornalski, "Theoretical considerations on charged graphene as active gamma radiation shields", The European Physical Journal Applied Physics, vol 81, pp 30401,2018.
  • D. Ickecan, M. N. Turkan, H. Gulbi̇cim, "Investigation of shielding properties of impregnated activated carbon for gamma-rays", Applied Radiation and Isotopes, vol 172,pp 109687, 2021.
  • A. K. Geim, "Graphene: status and prospects", science, vol 324, pp 1530-1534,2009.
  • Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, "Graphene and graphene oxide: synthesis, properties, and applications", Advanced materials,vol 22 pp 3906-3924, 2010.
  • R. S. Edwards, K. S. Coleman, "Graphene synthesis: relationship to applications", Nanoscale ,vol 5, pp 38-51, 2013.
  • M. J. Sweetman, S. May, N. Mebberson, P. Pendleton, K. Vasilev, S. E. Plush, J. D. Hayball, "Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification", Carbon, vol 3, pp 18, 2017.
  • E. Pérez-Mayoral, I. Matos, M. Bernardo, I. M. Fonseca, "New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons", Catalysts, vol 9, pp 133,2019.
  • D. Ickecan, R. Zan, S. Nezir, "Eco-friendly synthesis and characterization of reduced graphene oxide", Journal of Physics: Conference Series, IOP Publishing, pp. 012027, 2017.
  • D. Ickecan, N. Turkan, A. Ozcan, An Eco-friendly Material: Graphene, LAP LAMBERT Academic Publishing, Germany, 2021.
  • S. S. Kiani, Y. Faiz, A. Farooq, M. Ahmad, N. Irfan, M. Nawaz, S. Bibi, "Synthesis and adsorption behavior of activated carbon impregnated with ASZM-TEDA for purification of contaminated air", Diamond and Related Materials, pp 107916,2020.
  • D. T. Doughty, J. E. Groose, "Chromium-free impregnated activated carbon for adsorption of toxic gases and/or vapors", U.S. Patent 0405404A1, June 25 1991.
  • M. Medhat, "Application of gamma-ray transmission method for study the properties of cultivated soil", Annals of Nuclear Energy ,vol 40 , pp 53-59,2012.
  • Y. K. Vermani, T. Singh, "Numerical investigation on photon energy absorption parameters for some Bi–Sn–Zn alloys in wide energy region", Pramana, vol 95, pp 1-14, 2021.
  • I. Kawrakow, D. Rogers, "The EGSnrc code system", NRC Report PIRS-701, NRC, Ottawa , 2000.
  • H. Gülbiçim, M. Ç. Tufan, M. N. Türkan, "The investigation of vermiculite as an alternating shielding material for gamma rays", Radiation Physics and Chemistry,vol 130, pp 112-117, 2017.

Comparing the Shielding Features of Graphene and Impregnated Activated Carbon with Selected Traditional Shielding Materials For Gamma-Rays

Yıl 2023, Cilt: 27 Sayı: 3, 580 - 589, 30.06.2023
https://doi.org/10.16984/saufenbilder.1152986

Öz

Graphene and carbon-based materials are widely used in daily life applications. The richness of optical and electronic properties has made them rapidly rising materials on the horizon of material science and condensed matter physics. Having the sheets of atoms stacked in disorganized manner makes activated carbon different from other forms of graphitic structures. The research about the shielding properties of reduced graphene oxide (RGO) and activated carbon for gamma-rays are very rare and active domain of study. Since the use of radioactive sources in different fields (nuclear industry, shielding materials, radiation biophysics and space research application, etc.) has been increasing expeditiously, the photon interactions with matter have gained importance in the world of material science technology. In this work, we review the basics of the impregnated activated carbon (AC) and RGO, as well as the relationship between the structures and the gamma shielding properties in terms of both quality and efficiency. XCom software and EGSnrc simulation code were used to obtain the theoretical values of various shielding parameters which are significantly important to be able to understand the shielding properties of AC and RGO for gamma-rays. We report the mass attenuation coefficients (μm), the half value layer (HVL), the tenth value layer (TVL), and the mean free path (MFP) values and compare them with other commonly used shielding materials like lead, borosilicate, concrete, and vermiculite. The calculated data showed that AC is very appropriate and consistent to be one of the candidates for shielding materials of gamma-rays even though the graphene is seen as inconsistent for such purpose.

Kaynakça

  • M. Büyükyıldız, M. Kurudirek, M. Ekici, O. İçelli, Y. Karabul, “Determination of radiation shielding parameters of 304L stainless steel specimens from welding area for photons of various gamma ray sources”, Progress in Nuclear Energy, vol. 100, pp 245-254,2017.
  • H.C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, The Journal of Physical Chemistry B ,vol. 110, pp 8535-8539, 2006.
  • M. Zdrojek, J. Bomba, A. Łapińska, A. Dużyńska, K. Żerańska-Chudek, J. Suszek, L. Stobiński, A. Taube, M. Sypek, J. Judek, Graphene-based plastic absorber for total sub-terahertz radiation shielding, Nanoscale 10 (2018) 13426-13431.
  • J. Viegas, L. A. Silva, A. M. Batista, C. A. Furtado, J. P. Nascimento, L. O. Faria, "Increased X-ray attenuation efficiency of graphene-based nanocomposite", Industrial & Engineering Chemistry Research, vol. 56 pp 11782-11790,2017.
  • S. A. Hashemi, S. M. Mousavi, R. Faghihi, M. Arjmand, S. Sina, A. M. Amani, "Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding", Radiation Physics and Chemistry, vol.146 , pp 77-85, 2018.
  • A. K. Singh, A.N. Yadav, A. Srivastava, K. K. Haldar, M. Tomar, A.V. Alaferdov, S. A. Moshkalev, V. Gupta, K. Singh, "CdSe/V2O5 core/shell quantum dots decorated reduced graphene oxide nanocomposite for high-performance electromagnetic interference shielding application", Nanotechnology, vol 30, pp 505-704,2019.
  • A. Ansón-Casaos, J. Puértolas, F. J. Pascual, J. Hernández-Ferrer, P. Castell, A. M. Benito, W. K. Maser, M. Martínez, "The effect of gamma-irradiation on few-layered graphene materials", Applied Surface Science, vol 301, pp. 264-272,2014.
  • K. W. Fornalski, "Theoretical considerations on charged graphene as active gamma radiation shields", The European Physical Journal Applied Physics, vol 81, pp 30401,2018.
  • D. Ickecan, M. N. Turkan, H. Gulbi̇cim, "Investigation of shielding properties of impregnated activated carbon for gamma-rays", Applied Radiation and Isotopes, vol 172,pp 109687, 2021.
  • A. K. Geim, "Graphene: status and prospects", science, vol 324, pp 1530-1534,2009.
  • Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, "Graphene and graphene oxide: synthesis, properties, and applications", Advanced materials,vol 22 pp 3906-3924, 2010.
  • R. S. Edwards, K. S. Coleman, "Graphene synthesis: relationship to applications", Nanoscale ,vol 5, pp 38-51, 2013.
  • M. J. Sweetman, S. May, N. Mebberson, P. Pendleton, K. Vasilev, S. E. Plush, J. D. Hayball, "Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification", Carbon, vol 3, pp 18, 2017.
  • E. Pérez-Mayoral, I. Matos, M. Bernardo, I. M. Fonseca, "New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons", Catalysts, vol 9, pp 133,2019.
  • D. Ickecan, R. Zan, S. Nezir, "Eco-friendly synthesis and characterization of reduced graphene oxide", Journal of Physics: Conference Series, IOP Publishing, pp. 012027, 2017.
  • D. Ickecan, N. Turkan, A. Ozcan, An Eco-friendly Material: Graphene, LAP LAMBERT Academic Publishing, Germany, 2021.
  • S. S. Kiani, Y. Faiz, A. Farooq, M. Ahmad, N. Irfan, M. Nawaz, S. Bibi, "Synthesis and adsorption behavior of activated carbon impregnated with ASZM-TEDA for purification of contaminated air", Diamond and Related Materials, pp 107916,2020.
  • D. T. Doughty, J. E. Groose, "Chromium-free impregnated activated carbon for adsorption of toxic gases and/or vapors", U.S. Patent 0405404A1, June 25 1991.
  • M. Medhat, "Application of gamma-ray transmission method for study the properties of cultivated soil", Annals of Nuclear Energy ,vol 40 , pp 53-59,2012.
  • Y. K. Vermani, T. Singh, "Numerical investigation on photon energy absorption parameters for some Bi–Sn–Zn alloys in wide energy region", Pramana, vol 95, pp 1-14, 2021.
  • I. Kawrakow, D. Rogers, "The EGSnrc code system", NRC Report PIRS-701, NRC, Ottawa , 2000.
  • H. Gülbiçim, M. Ç. Tufan, M. N. Türkan, "The investigation of vermiculite as an alternating shielding material for gamma rays", Radiation Physics and Chemistry,vol 130, pp 112-117, 2017.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Dilara İckecan 0000-0002-6957-9095

Türkan Nuredin 0000-0002-0452-9484

Doğan Erbahar 0000-0002-8633-4284

Hasan Gülbiçim 0000-0003-4518-2509

Erken Görünüm Tarihi 22 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 2 Ağustos 2022
Kabul Tarihi 7 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 3

Kaynak Göster

APA İckecan, D., Nuredin, T., Erbahar, D., Gülbiçim, H. (2023). Comparing the Shielding Features of Graphene and Impregnated Activated Carbon with Selected Traditional Shielding Materials For Gamma-Rays. Sakarya University Journal of Science, 27(3), 580-589. https://doi.org/10.16984/saufenbilder.1152986
AMA İckecan D, Nuredin T, Erbahar D, Gülbiçim H. Comparing the Shielding Features of Graphene and Impregnated Activated Carbon with Selected Traditional Shielding Materials For Gamma-Rays. SAUJS. Haziran 2023;27(3):580-589. doi:10.16984/saufenbilder.1152986
Chicago İckecan, Dilara, Türkan Nuredin, Doğan Erbahar, ve Hasan Gülbiçim. “Comparing the Shielding Features of Graphene and Impregnated Activated Carbon With Selected Traditional Shielding Materials For Gamma-Rays”. Sakarya University Journal of Science 27, sy. 3 (Haziran 2023): 580-89. https://doi.org/10.16984/saufenbilder.1152986.
EndNote İckecan D, Nuredin T, Erbahar D, Gülbiçim H (01 Haziran 2023) Comparing the Shielding Features of Graphene and Impregnated Activated Carbon with Selected Traditional Shielding Materials For Gamma-Rays. Sakarya University Journal of Science 27 3 580–589.
IEEE D. İckecan, T. Nuredin, D. Erbahar, ve H. Gülbiçim, “Comparing the Shielding Features of Graphene and Impregnated Activated Carbon with Selected Traditional Shielding Materials For Gamma-Rays”, SAUJS, c. 27, sy. 3, ss. 580–589, 2023, doi: 10.16984/saufenbilder.1152986.
ISNAD İckecan, Dilara vd. “Comparing the Shielding Features of Graphene and Impregnated Activated Carbon With Selected Traditional Shielding Materials For Gamma-Rays”. Sakarya University Journal of Science 27/3 (Haziran 2023), 580-589. https://doi.org/10.16984/saufenbilder.1152986.
JAMA İckecan D, Nuredin T, Erbahar D, Gülbiçim H. Comparing the Shielding Features of Graphene and Impregnated Activated Carbon with Selected Traditional Shielding Materials For Gamma-Rays. SAUJS. 2023;27:580–589.
MLA İckecan, Dilara vd. “Comparing the Shielding Features of Graphene and Impregnated Activated Carbon With Selected Traditional Shielding Materials For Gamma-Rays”. Sakarya University Journal of Science, c. 27, sy. 3, 2023, ss. 580-9, doi:10.16984/saufenbilder.1152986.
Vancouver İckecan D, Nuredin T, Erbahar D, Gülbiçim H. Comparing the Shielding Features of Graphene and Impregnated Activated Carbon with Selected Traditional Shielding Materials For Gamma-Rays. SAUJS. 2023;27(3):580-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.