Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 27 Sayı: 3, 603 - 613, 30.06.2023
https://doi.org/10.16984/saufenbilder.1190168

Öz

Kaynakça

  • H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Weinheim: Wiley-VCH, 2008.
  • J. C. Fan, S. L. Chang, Z. Xie, “ZnO-Based Light-Emitting Diodes,” in Optoelectronics - Advanced Materials and Devices, London: IntechOpen, 2013.
  • M. A. Martínez, J. Herrero, M. T. Gutiérrez, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells,” Solar Energy Materials and Solar Cells, vol. 45, no. 1, pp. 75–86, 1997.
  • Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F. R. Diaz, M. Morsli, K. Napo, M. A. del Valle, J. C. Bernède., “ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells,” Applied Surface Science, vol. 255, no. 13–14, pp. 6615–6619,2009.
  • X. Wen, Y. He, C. Chen, X. Liu, L. Wang, B. Yang M. Leng, H. Song, K. Zeng, D. Li, K. Li, L. Gao, J. Tang, “Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells,” Solar Energy Materials and Solar Cells, vol. 172, pp. 74–81, 2017.
  • J. H. Lee, C. H. Ahn, S. Hwang, C. H. Woo, J. S. Park, H. K. Cho, J. Y. Lee, “Role of the crystallinity of ZnO films in the electrical properties of bottom-gate thin film transistors,” Thin Solid Films, vol. 519, no. 20, pp. 6801–6805, 2011.
  • M. Kumar, H. Jeong, A. Kumar, B. P. Singh, D. Lee, “Magnetron-sputtered high performance Y-doped ZnO thin film transistors fabricated at room temperature,” Materials Science in Semiconductor Processing, vol. 71, pp. 204–208, 2017.
  • Z. Xiaming, W. Huizhen, W. Shuangjiang, Z. Yingying, C. Chunfeng, S. Jianxiao, Y. Zijian, D. Xiaoyang, D. Shurong, “Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors,” Journal of Semiconductors, vol. 30, no. 3, pp. 033001, 2009.
  • Y. S. Choi, J. W. Kang, D. K. Hwang, S. J. Park, “Recent Advances in ZnO-Based Light-Emitting Diodes,” Ieee Transactıons On Electron Devıces, vol. 57, no. 1, pp. 26–41, 2010.
  • M. N. H. Mia, M. F. Pervez, M. K. Hossain, M. R. Rahman. M. J. Uddin, M. A. Al Mashud, H.K. Ghosh, M. Hoq, “Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method,” Results in Physics, vol. 7, pp. 2683–2691, 2017.
  • P. Giri, P. Chakrabarti, “Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications,” Superlattices and Microstructures, vol. 93, pp. 248–260, 2016.
  • Y. H. Liu, S. J. Young, C. H. Hsiao, L. W. Ji, T. H. Meen, W. Water, S. J. Chang, “Visible-Blind Photodetectors With Mg-Doped ZnO Nanorods,” IEEE Photonics Technology Letters, vol. 26, no. 7, pp. 645–648, 2014.
  • X. He, L. Wu, X. Hao, J. Zhang, C. Li, W. Wang, L. Feng, Z. Du, “The Band Structures of Zn1−xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO(In) Window Layer by SCAPS,” Energies, vol. 12, no. 2, pp. 291, 2019.
  • T. Törndahl, C. Platzer-Björkman, J. Kessler, M. Edoff, “Atomic layer deposition of Zn1−xMgxO buffer layers for Cu(In,Ga)Se2 solar cells,” Progress in Photovoltaics: Research and Applications, vol. 15, no. 3, pp. 225–235, 2007.
  • K. Li, K. Li, R. Kondrotas, C. Chen, S. Lu, X. Wen, D. Li, J. Luo, Y. Zhao, J. Tang, “Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell,” Solar Energy, vol. 167, pp. 10–17, 2018.
  • M. R. Islam, M. G. Azam, “Enhanced photocatalytic activity of Mg-doped ZnO thin films prepared by sol–gel method,” Surface Engineering, vol. 37, no. 6, pp. 775–783, 2021.
  • I. S. Okeke, K. K. Agwu, A. A. Ubachukw, I. G. Madiba, M. Maaza, G. M. Whyte, F. I. Ezema, “Impact of particle size and surface defects on antibacterial and photocatalytic activities of undoped and Mg-doped ZnO nanoparticles, biosynthesized using one-step simple process,” Vacuum, vol. 187, pp. 110110, 2021.
  • B. D. Cullity, Elements of X-ray Diffraction, Massachusetts: Addison-Wesley Publishing Company, Inc, 1956.
  • R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica Section A, vol. 32, no. 5, pp. 751–767, 1976.
  • A. Mahroug, B. Mari, M. Mollar, I. Boudjadar, L. Guerbous, A. Henni, N. Selmi, “Studies On Structural, Surface Morphological, Optical, Luminescence and Uv Photodetection Properties Of Sol–Gel Mg-Doped ZnO Thin Films,” Surface Review and Letters, vol. 26, no. 03, pp. 1850167, 2019.
  • Ş. Ţălu, S. Boudour, I. Bouchama, B. Astinchap, H. Ghanbaripour, M. S. Akhtar, S. Zahra, “Multifractal analysis of Mg‐doped ZnO thin films deposited by sol–gel spin coating method,” Microscopy Research and Technique, vol. 85, no. 4, pp. 1213-1223, 2021.
  • M. Arshad, M. M. Ansari, A. S. Ahmed, P. Tripathi, S. S. Z. Ashraf, A. H. Naqvi, A. Azam, “Band gap engineering and enhanced photoluminescence of Mg doped ZnO nanoparticles synthesized by wet chemical route,” Journal of Luminescence, vol. 161, pp. 275–280, 2015.
  • Y. Bouachiba, A. Mammeri, A. Bouabellou, O. Rabia, S. Saidi, A. Taabouche, B. Rahal, L. Benharrat, H. Serrar, M. Boudissa, “Optoelectronic and birefringence properties of weakly Mg-doped ZnO thin films prepared by spray pyrolysis,” Journal of Materials Science: Materials in Electronics, vol. 33, no. 9, pp. 6689–6699, 2022.
  • M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, “Synthesis and characteristics of Mg doped ZnO thin films: Experimental and ab-initio study,” Results in Physics, vol. 7, pp. 620–627, 2017.
  • J. Varghese, S. K. Saji, N. R. Aswathy, R. Vinodkumar, “Influence of Mg doping on structural, optical and dielectric properties of sol–gel spin coated ZnO thin films,” The European Physical Journal Plus, vol. 136, no. 12, pp. 1206, 2021.
  • K. Upadhya U. G. Deekshitha, A. Antony, A. Ani, I. V. Kityk, J. Jedryka, A. Wojciechowski, K. Ozga, P. Poornesh, S. D. Kulkarni, N. Andrushchak, “Second and third harmonic nonlinear optical process in spray pyrolysed Mg:ZnO thin films,” Optical Materials, vol. 102, pp. 109814, 2020.
  • R. Kara, L. Mentar, A. Azizi, “Synthesis and characterization of Mg-doped ZnO thin-films electrochemically grown on FTO substrates for optoelectronic applications,” RSC Advances, vol. 10, no. 66, pp. 40467-40479, 2020.
  • F. Hussain, M. Imran, R. M. A. Khalil N. A. Niaz, A. M. Rana, M. A. Sattar, M. Ismail, A. Majid, S. Kim, F. Iqbal, M. A. Javid, S. Saeed, A. Sattar, “An insight of Mg doped ZnO thin films: A comparative experimental and first-principle investigations,” Physica E: Low-dimensional Systems and Nanostructures, vol. 115, pp. 113658, 2020.
  • A. Goktas, A. Tumbul, Z. Aba, M. Durgun, “Mg doping levels and annealing temperature induced structural, optical and electrical properties of highly c-axis oriented ZnO:Mg thin films and Al/ZnO:Mg/p-Si/Al heterojunction diode,” Thin Solid Films, vol. 680, pp. 20–30, 2019.
  • J. Singh, P. Kumar, K. S. Hui, K. N. Hui, K. Ramam, R. S. Tiwaria, O. N. Srivastavaa, “Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires,” CrystEngComm, vol. 14, no. 18, pp. 5898, 2012.
  • D. İskenderoğlu, A. E. Kasapoğlu, E. Gür, “Valance band properties of MgZnO thin films with increasing Mg content; phase separation effects,” Materials Research Express, vol. 6, no. 3, pp. 036402, 2018.
  • P. Sahoo, A. Sharma, S. Padhan, R. Thangavel, “Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays,” International Journal of Hydrogen Energy, vol. 45, no. 43, pp. 22576–22588, 2020.
  • V. Etacheri, R. Roshan, V. Kumar, “Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis,” ACS Applied Materials and Interfaces, vol. 4, no. 5, pp. 2717–2725, 2012.
  • H. Zhuang, J. Wang, H. Liu, J. Li, P. Xu, “Structural and Optical Properties of ZnO Nanowires Doped with Magnesium,” Acta Physica Polonica A, vol. 119, no. 6, pp. 819–823, 2011.
  • S. H. Jeong, J. H. Park, B. T. Lee, “Effects of Mg doping rate on physical properties of Mg and Al co-doped Zn1−0.02Mg Al0.02O transparent conducting oxide films prepared by rf magnetron sputtering,” Journal of Alloys Compounds, vol. 617, pp. 180–184, 2014.
  • H. S. So, S. Bin Hwang, D. H. Jung, H. Lee, “Optical and electrical properties of Sn-doped ZnO thin films studied via spectroscopic ellipsometry and hall effect measurements,” Journal of the Korean Physical Society, vol. 70, no. 7, pp. 706–713, 2017.
  • S. K. O’Leary, S. Zukotynski, J. M. Perz, “Disorder and optical absorption in amorphous silicon and amorphous germanium,” Journal of Non-Crystalline Solids, vol. 210, no. 2–3, pp. 249–253, 1997.
  • F. Z. Bedia, A. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, “Structural, Optical and Electrical Properties of Sn-doped Zinc Oxide Transparent Films Interesting for Organic Solar Cells (OSCs),” Energy Procedia, vol. 74, pp. 539–546, 2015.
  • K. Huang Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, F. Liu, “Preparation and characterization of Mg-doped ZnO thin films by sol–gel method,” Applied Surface Science, vol. 258, no. 8, pp. 3710–3713, 2012.
  • B. Kim, D. Lee, B. Hwang, D.-J. Kim, C. K. Kim, “Effects of Mg doping and annealing temperature on the performance of Mg-doped ZnO nanoparticle thin-film transistors,” Molecular Crystals and Liquid Crystals, vol. 235, no.1, pp. 61–74, 2021.
  • M. Caglar, Y. Caglar, S. Ilican, “Investigation of the effect of Mg doping for improvements of optical and electrical properties,” Physica B: Condensed Matter, vol. 485, pp. 6–13, 2016.
  • B. H. Kim, C. M. Staller, S. H. Cho, S. Heo, C. E. Garrison, J. Kim, D. J. Milliron, “High Mobility in Nanocrystal-Based Transparent Conducting Oxide Thin Films,” ACS Nano, vol. 12, no. 4, pp. 3200–3208, 2018.
  • L. T. C. Tuyen, S.-R. Jian, N. T. Tien, P. H. Le, “Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping,” Materials (Basel), vol. 12, no. 10, pp. 1665, 2019.
  • P. Senthilkumar, S. Raja, R. Ramesh Babu, G. Vasuki, “Enhanced electrical and optoelectronic properties of W doped SnO2 thin films,” Optical Materials, vol. 126, pp. 112234, 2022.
  • G. Turgut, E. F. Keskenler, S. Aydın, D. Tatar, E. Sonmez, S. Dogan, B. Duzgun, “Characteristic evaluation on spray-deposited WFTO thin films as a function of W doping ratio,” Rare Metals, vol. 33, no. 4, pp. 433–441, 2014.
  • E. Vinoth, S. Gowrishankar, N. Gopalakrishnan, “Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films,” Applied Physics A, vol. 124, no. 6, p. 433, 2018.

The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis

Yıl 2023, Cilt: 27 Sayı: 3, 603 - 613, 30.06.2023
https://doi.org/10.16984/saufenbilder.1190168

Öz

ZnO is a versatile material and tailoring its physical properties to the field of application is technologically crucial. Intentionally doping with a foreign element is the most common and useful method for that. In this presented work, ZnO films doped at different Mg concentrations (0%, 5%, 10%, and 15%) were deposited onto glass substrates by ultrasonic spray pyrolysis in order to investigate the effect of Mg doping. AFM and SEM images captured for the morphological investigations revealed that Mg doping deteriorated the surface of the films. The structural analysis showed that the Mg doping at 5% enhanced the structural properties, but the crystallization level was adversely affected at higher Mg concentrations. Optical band gap and Urbach energies increased from 3.30 eV to 3.45 eV and from 79.5 meV to 119.8 meV, respectively. The lowest electrical resistivity was noted as 8.72101 cm for Mg-doped ZnO films at 5%.

Kaynakça

  • H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Weinheim: Wiley-VCH, 2008.
  • J. C. Fan, S. L. Chang, Z. Xie, “ZnO-Based Light-Emitting Diodes,” in Optoelectronics - Advanced Materials and Devices, London: IntechOpen, 2013.
  • M. A. Martínez, J. Herrero, M. T. Gutiérrez, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells,” Solar Energy Materials and Solar Cells, vol. 45, no. 1, pp. 75–86, 1997.
  • Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F. R. Diaz, M. Morsli, K. Napo, M. A. del Valle, J. C. Bernède., “ZnO thin films fabricated by chemical bath deposition, used as buffer layer in organic solar cells,” Applied Surface Science, vol. 255, no. 13–14, pp. 6615–6619,2009.
  • X. Wen, Y. He, C. Chen, X. Liu, L. Wang, B. Yang M. Leng, H. Song, K. Zeng, D. Li, K. Li, L. Gao, J. Tang, “Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells,” Solar Energy Materials and Solar Cells, vol. 172, pp. 74–81, 2017.
  • J. H. Lee, C. H. Ahn, S. Hwang, C. H. Woo, J. S. Park, H. K. Cho, J. Y. Lee, “Role of the crystallinity of ZnO films in the electrical properties of bottom-gate thin film transistors,” Thin Solid Films, vol. 519, no. 20, pp. 6801–6805, 2011.
  • M. Kumar, H. Jeong, A. Kumar, B. P. Singh, D. Lee, “Magnetron-sputtered high performance Y-doped ZnO thin film transistors fabricated at room temperature,” Materials Science in Semiconductor Processing, vol. 71, pp. 204–208, 2017.
  • Z. Xiaming, W. Huizhen, W. Shuangjiang, Z. Yingying, C. Chunfeng, S. Jianxiao, Y. Zijian, D. Xiaoyang, D. Shurong, “Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors,” Journal of Semiconductors, vol. 30, no. 3, pp. 033001, 2009.
  • Y. S. Choi, J. W. Kang, D. K. Hwang, S. J. Park, “Recent Advances in ZnO-Based Light-Emitting Diodes,” Ieee Transactıons On Electron Devıces, vol. 57, no. 1, pp. 26–41, 2010.
  • M. N. H. Mia, M. F. Pervez, M. K. Hossain, M. R. Rahman. M. J. Uddin, M. A. Al Mashud, H.K. Ghosh, M. Hoq, “Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method,” Results in Physics, vol. 7, pp. 2683–2691, 2017.
  • P. Giri, P. Chakrabarti, “Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications,” Superlattices and Microstructures, vol. 93, pp. 248–260, 2016.
  • Y. H. Liu, S. J. Young, C. H. Hsiao, L. W. Ji, T. H. Meen, W. Water, S. J. Chang, “Visible-Blind Photodetectors With Mg-Doped ZnO Nanorods,” IEEE Photonics Technology Letters, vol. 26, no. 7, pp. 645–648, 2014.
  • X. He, L. Wu, X. Hao, J. Zhang, C. Li, W. Wang, L. Feng, Z. Du, “The Band Structures of Zn1−xMgxO(In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO(In) Window Layer by SCAPS,” Energies, vol. 12, no. 2, pp. 291, 2019.
  • T. Törndahl, C. Platzer-Björkman, J. Kessler, M. Edoff, “Atomic layer deposition of Zn1−xMgxO buffer layers for Cu(In,Ga)Se2 solar cells,” Progress in Photovoltaics: Research and Applications, vol. 15, no. 3, pp. 225–235, 2007.
  • K. Li, K. Li, R. Kondrotas, C. Chen, S. Lu, X. Wen, D. Li, J. Luo, Y. Zhao, J. Tang, “Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell,” Solar Energy, vol. 167, pp. 10–17, 2018.
  • M. R. Islam, M. G. Azam, “Enhanced photocatalytic activity of Mg-doped ZnO thin films prepared by sol–gel method,” Surface Engineering, vol. 37, no. 6, pp. 775–783, 2021.
  • I. S. Okeke, K. K. Agwu, A. A. Ubachukw, I. G. Madiba, M. Maaza, G. M. Whyte, F. I. Ezema, “Impact of particle size and surface defects on antibacterial and photocatalytic activities of undoped and Mg-doped ZnO nanoparticles, biosynthesized using one-step simple process,” Vacuum, vol. 187, pp. 110110, 2021.
  • B. D. Cullity, Elements of X-ray Diffraction, Massachusetts: Addison-Wesley Publishing Company, Inc, 1956.
  • R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica Section A, vol. 32, no. 5, pp. 751–767, 1976.
  • A. Mahroug, B. Mari, M. Mollar, I. Boudjadar, L. Guerbous, A. Henni, N. Selmi, “Studies On Structural, Surface Morphological, Optical, Luminescence and Uv Photodetection Properties Of Sol–Gel Mg-Doped ZnO Thin Films,” Surface Review and Letters, vol. 26, no. 03, pp. 1850167, 2019.
  • Ş. Ţălu, S. Boudour, I. Bouchama, B. Astinchap, H. Ghanbaripour, M. S. Akhtar, S. Zahra, “Multifractal analysis of Mg‐doped ZnO thin films deposited by sol–gel spin coating method,” Microscopy Research and Technique, vol. 85, no. 4, pp. 1213-1223, 2021.
  • M. Arshad, M. M. Ansari, A. S. Ahmed, P. Tripathi, S. S. Z. Ashraf, A. H. Naqvi, A. Azam, “Band gap engineering and enhanced photoluminescence of Mg doped ZnO nanoparticles synthesized by wet chemical route,” Journal of Luminescence, vol. 161, pp. 275–280, 2015.
  • Y. Bouachiba, A. Mammeri, A. Bouabellou, O. Rabia, S. Saidi, A. Taabouche, B. Rahal, L. Benharrat, H. Serrar, M. Boudissa, “Optoelectronic and birefringence properties of weakly Mg-doped ZnO thin films prepared by spray pyrolysis,” Journal of Materials Science: Materials in Electronics, vol. 33, no. 9, pp. 6689–6699, 2022.
  • M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, “Synthesis and characteristics of Mg doped ZnO thin films: Experimental and ab-initio study,” Results in Physics, vol. 7, pp. 620–627, 2017.
  • J. Varghese, S. K. Saji, N. R. Aswathy, R. Vinodkumar, “Influence of Mg doping on structural, optical and dielectric properties of sol–gel spin coated ZnO thin films,” The European Physical Journal Plus, vol. 136, no. 12, pp. 1206, 2021.
  • K. Upadhya U. G. Deekshitha, A. Antony, A. Ani, I. V. Kityk, J. Jedryka, A. Wojciechowski, K. Ozga, P. Poornesh, S. D. Kulkarni, N. Andrushchak, “Second and third harmonic nonlinear optical process in spray pyrolysed Mg:ZnO thin films,” Optical Materials, vol. 102, pp. 109814, 2020.
  • R. Kara, L. Mentar, A. Azizi, “Synthesis and characterization of Mg-doped ZnO thin-films electrochemically grown on FTO substrates for optoelectronic applications,” RSC Advances, vol. 10, no. 66, pp. 40467-40479, 2020.
  • F. Hussain, M. Imran, R. M. A. Khalil N. A. Niaz, A. M. Rana, M. A. Sattar, M. Ismail, A. Majid, S. Kim, F. Iqbal, M. A. Javid, S. Saeed, A. Sattar, “An insight of Mg doped ZnO thin films: A comparative experimental and first-principle investigations,” Physica E: Low-dimensional Systems and Nanostructures, vol. 115, pp. 113658, 2020.
  • A. Goktas, A. Tumbul, Z. Aba, M. Durgun, “Mg doping levels and annealing temperature induced structural, optical and electrical properties of highly c-axis oriented ZnO:Mg thin films and Al/ZnO:Mg/p-Si/Al heterojunction diode,” Thin Solid Films, vol. 680, pp. 20–30, 2019.
  • J. Singh, P. Kumar, K. S. Hui, K. N. Hui, K. Ramam, R. S. Tiwaria, O. N. Srivastavaa, “Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires,” CrystEngComm, vol. 14, no. 18, pp. 5898, 2012.
  • D. İskenderoğlu, A. E. Kasapoğlu, E. Gür, “Valance band properties of MgZnO thin films with increasing Mg content; phase separation effects,” Materials Research Express, vol. 6, no. 3, pp. 036402, 2018.
  • P. Sahoo, A. Sharma, S. Padhan, R. Thangavel, “Visible light driven photosplitting of water using one dimensional Mg doped ZnO nanorod arrays,” International Journal of Hydrogen Energy, vol. 45, no. 43, pp. 22576–22588, 2020.
  • V. Etacheri, R. Roshan, V. Kumar, “Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis,” ACS Applied Materials and Interfaces, vol. 4, no. 5, pp. 2717–2725, 2012.
  • H. Zhuang, J. Wang, H. Liu, J. Li, P. Xu, “Structural and Optical Properties of ZnO Nanowires Doped with Magnesium,” Acta Physica Polonica A, vol. 119, no. 6, pp. 819–823, 2011.
  • S. H. Jeong, J. H. Park, B. T. Lee, “Effects of Mg doping rate on physical properties of Mg and Al co-doped Zn1−0.02Mg Al0.02O transparent conducting oxide films prepared by rf magnetron sputtering,” Journal of Alloys Compounds, vol. 617, pp. 180–184, 2014.
  • H. S. So, S. Bin Hwang, D. H. Jung, H. Lee, “Optical and electrical properties of Sn-doped ZnO thin films studied via spectroscopic ellipsometry and hall effect measurements,” Journal of the Korean Physical Society, vol. 70, no. 7, pp. 706–713, 2017.
  • S. K. O’Leary, S. Zukotynski, J. M. Perz, “Disorder and optical absorption in amorphous silicon and amorphous germanium,” Journal of Non-Crystalline Solids, vol. 210, no. 2–3, pp. 249–253, 1997.
  • F. Z. Bedia, A. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, “Structural, Optical and Electrical Properties of Sn-doped Zinc Oxide Transparent Films Interesting for Organic Solar Cells (OSCs),” Energy Procedia, vol. 74, pp. 539–546, 2015.
  • K. Huang Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, F. Liu, “Preparation and characterization of Mg-doped ZnO thin films by sol–gel method,” Applied Surface Science, vol. 258, no. 8, pp. 3710–3713, 2012.
  • B. Kim, D. Lee, B. Hwang, D.-J. Kim, C. K. Kim, “Effects of Mg doping and annealing temperature on the performance of Mg-doped ZnO nanoparticle thin-film transistors,” Molecular Crystals and Liquid Crystals, vol. 235, no.1, pp. 61–74, 2021.
  • M. Caglar, Y. Caglar, S. Ilican, “Investigation of the effect of Mg doping for improvements of optical and electrical properties,” Physica B: Condensed Matter, vol. 485, pp. 6–13, 2016.
  • B. H. Kim, C. M. Staller, S. H. Cho, S. Heo, C. E. Garrison, J. Kim, D. J. Milliron, “High Mobility in Nanocrystal-Based Transparent Conducting Oxide Thin Films,” ACS Nano, vol. 12, no. 4, pp. 3200–3208, 2018.
  • L. T. C. Tuyen, S.-R. Jian, N. T. Tien, P. H. Le, “Nanomechanical and Material Properties of Fluorine-Doped Tin Oxide Thin Films Prepared by Ultrasonic Spray Pyrolysis: Effects of F-Doping,” Materials (Basel), vol. 12, no. 10, pp. 1665, 2019.
  • P. Senthilkumar, S. Raja, R. Ramesh Babu, G. Vasuki, “Enhanced electrical and optoelectronic properties of W doped SnO2 thin films,” Optical Materials, vol. 126, pp. 112234, 2022.
  • G. Turgut, E. F. Keskenler, S. Aydın, D. Tatar, E. Sonmez, S. Dogan, B. Duzgun, “Characteristic evaluation on spray-deposited WFTO thin films as a function of W doping ratio,” Rare Metals, vol. 33, no. 4, pp. 433–441, 2014.
  • E. Vinoth, S. Gowrishankar, N. Gopalakrishnan, “Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films,” Applied Physics A, vol. 124, no. 6, p. 433, 2018.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Araştırma Makalesi
Yazarlar

Emrah Sarıca 0000-0002-9339-5114

Erken Görünüm Tarihi 22 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 17 Ekim 2022
Kabul Tarihi 12 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 3

Kaynak Göster

APA Sarıca, E. (2023). The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis. Sakarya University Journal of Science, 27(3), 603-613. https://doi.org/10.16984/saufenbilder.1190168
AMA Sarıca E. The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis. SAUJS. Haziran 2023;27(3):603-613. doi:10.16984/saufenbilder.1190168
Chicago Sarıca, Emrah. “The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis”. Sakarya University Journal of Science 27, sy. 3 (Haziran 2023): 603-13. https://doi.org/10.16984/saufenbilder.1190168.
EndNote Sarıca E (01 Haziran 2023) The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis. Sakarya University Journal of Science 27 3 603–613.
IEEE E. Sarıca, “The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis”, SAUJS, c. 27, sy. 3, ss. 603–613, 2023, doi: 10.16984/saufenbilder.1190168.
ISNAD Sarıca, Emrah. “The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis”. Sakarya University Journal of Science 27/3 (Haziran 2023), 603-613. https://doi.org/10.16984/saufenbilder.1190168.
JAMA Sarıca E. The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis. SAUJS. 2023;27:603–613.
MLA Sarıca, Emrah. “The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis”. Sakarya University Journal of Science, c. 27, sy. 3, 2023, ss. 603-1, doi:10.16984/saufenbilder.1190168.
Vancouver Sarıca E. The Effect of Mg Content on the Physical Properties of ZnO Films Deposited by Ultrasonic Spray Pyrolysis. SAUJS. 2023;27(3):603-1.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.